Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РЕТРОСПЕКТИВА ГЕНЕТИКИ-1 - для слияния.doc
Скачиваний:
71
Добавлен:
27.08.2019
Размер:
1.44 Mб
Скачать

Сравнительная молекулярная биология гена.

Молекулярную парадигму в представлениях о гене лучше всего иллюстрирует Центральная догма молекулярной биологии, сформулированная Ф.Криком первоначально в 1958 г в форме триады ДНК → РНК → Белок (Crick, 1958). Позже (Crick, 1970) Центральная догма приобрела более привычную сегодня форму треугольника, объединяющего все те же основные макромолекулы – носители свойств живых систем (Рис. ). В наши дни это – воплощение матричного принципа в биологии, предложенного первоначально Н.К.Кольцовым в 1928 г (см.: Кольцов, 1936) для объяснения воспроизведения хромосом. Именно, матричный принцип, а не перенос генетической информации, как его часто трактуют, предлагая многочисленные исключения и дополнения. С понятием «информация» из области кибернетики, подразумевающей наличие прямых и обратных связей в системе, нужно обращаться осторжнее. В то же время рассмотрение Центральной догмы как воплощения матричного принципа позволяет отбросить попытки ее модификаций за одним исключением. Это исключение, или дополнение – рассмотрение пространственных, или конформационных матриц белковой природы, возникшее в результате открытия белков-прионов (см. далее). Это дополнение не отменяет Центральную догму. Напротив, оно позволяет формулировать новую, более широкую парадигму в молекулярной биологии, основанную на матричном принципе. Ее генезис легко видеть как последовательное расширение генетической парадигмы: Менделизм → хромосомная теория → ДНК как генетический материал → матричный принцип.

Методы генной инженерии и прямые определения первичной структуры молекул ДНК позволили перейти от косвенных, генетических, критериев («Blackboard arguments of genetics», как назвал их С. Бреннер) при изучении генетического материала к прямому физическому исследованию генов, их структуры и функций. Сформировалась область исследования, которую Дж. Уотсон назвал «молекулярной биологией гена».

В результате торжества молекулярной парадигмы структура гена стала представляться универсальной для всех живых существ, также как универса­льным считался и генетический код. Представления об универсальном строе­нии гена и генетического материала в конце 1960-х гг. лучше всего характери­зует высказывание, приписываемое Ж. Моно: «То, что справедливо для ки­шечной палочки, справедливо и для слона. (What is true for E. coli, is true for E. lephant)».

Дальнейшее развитие теории гена оказалось связанным именно с выяв­лением различий между таксономически удаленными друг от друга организ­мами. Прежде всего, выяснили, что оперонная организация и регу­ляция действия генов характерна только для бактерий, но отнюдь не для эукариот. Бактериальный оперон, как показали Ф. Жакоб и Ж. Моно, объе­диняет несколько генов, регулируемых как единица транскрипции. Гены эукариот не объединяются в опероны, и каждый из них, как правило, регули­руется отдельно, служит матрицей для отдельной молекулы иРНК и кодиру­ет один полипептид.

В 1977 г. Ф. Шарп и Р. Роберте (Нобелевская премия за 1993 г.) обнаружи­ли, что ДНК генов аденовируса 2 значительно длиннее, чем соответствующие им иРНК. Так было открыто мозаичное или интрон-экзонное строение генов, характерное для эукариот. Как оказалось, в ДНК гена и в его первичном транс­крипте чередуются участки, представленные в молекуле зрелой иРНК (экзоны) и участки, в ней не представленные (интроны), которые удаляются при со­зревании первичного транскрипта. Этот процесс получил название сплайсинга. Термин заимствован из морского дела и означает сращивание канатов без узлов.

Сравнительная молекулярная биолгия гена позволила выявить основные тенденции в эволюционных преобразованиях генетического материала (см….НАПИСАТЬ В ЭВОЛЮЦИЮ).

В этот же период еще два открытия поколебали устоявшиеся представ­ления об универсальности структуры и функции гена: обнаружение перекры­вающихся генов у некоторых вирусов и установление вариаций генетическо­го кода. Некоторые кодоны такого квазиуниверсального кода имеют разное значение не только у разных организмов, но и в разных компартментах эукариотической клетки - ядре и митохондриях.

Заколебалось и казавшееся незыблемым представление о постоянстве линейного расположения генов в хромосомах. Еще в 1950 г. Б. Мак-Клинток на основании исследований генетической нестабильности у кукурузы высказала предположение о существовании так называемых контролирую­щих, или мобильных, генетических элементов. В конце 1960-х гг. М. Грин при­влек аналогичную гипотезу для объяснения нестабильности гена W у дрозо­филы. Эти необычные гипотезы нашли окончательное подтверждение толь­ко в 1970-е гг., когда у бактерий были открыты, клонированы и исследованы транспозоны—последовательности ДНК, способные перемещаться по геному и переносить «классические» гены в новые места локализации. В 1983 г. Б. Мак-Клинток получила за свое открытие Нобелевскую премию.

Ген оказался изменчив в онтогенезе. В конце 1970-х гг. С. Тонегава обнару­жил, что участки ДНК, кодирующие вариабельные и константные участки им­муноглобулинов мыши, у взрослого животного расположенные в виде непре­рывной последовательности, в их эмбрионах или половых клетках пространст­венно разделены (Нобелевская премия 1987 г.). В тот же период А. Херсковиц, Дж. Хикс и Дж. Стразерн показали, что закономерное переключение ти­пов спаривания в жизненном цикле у гомоталличных дрожжей-сахаромицетов также сопряжено с перестройками генетического материала. То, что ранее считалось мутациями – превращения типов спаривания (а ↔ α) у этих дрожжей, оказалось результатом транспозиции «запасного» генетического материала из т.н. кассет в локус типа спаривания.

Перемещение акцентов в изучении гена на молекулярный уровень, и, особенно, возникновение геномики, породило много проблем, лишь косвенно связанных с генетикой, например, открытые рамки считывания, определяе­мые прямым секвенированием геномов, когда очевидно, что в данном участ­ке что-то закодировано, но неизвестно, что именно; нуклеотидные последова­тельности, относительно которых неясно, кодируют ли они что-нибудь; кон­сенсусы, или усредненные по структуре последовательности регуляторных, мигрирующих, теломерных, автономно-реплицирующихся и других элемен­тов генома. Попытки точного соподчинения «молекулярных» и классических генетических проблем и понятий вряд ли будут успешными. Это связано с тем, что орга­низм или клетка представляют собой многоуровневую систему, в которой структуры и законы функционирования низшего (молекулярного) уровня не тождественны таковым на высшем (биологическом) уровне и очень часто не наблюдается однозначного соответствия между механизмами (которые молекулярные) и генетической феноменологией, которая проявляет себя на организменном уровне. Тем самым возникает биологический принцип неопределенности, связанный именно с многоуровневостью организации биологических систем.

Теория мутационного процесса и относительная стабильность генов