Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РЕТРОСПЕКТИВА ГЕНЕТИКИ-1 - для слияния.doc
Скачиваний:
71
Добавлен:
27.08.2019
Размер:
1.44 Mб
Скачать

Гены—это днк

Дрозофила оказалась не самым удобным объектом для изучения проб­лемы гена. Начиная с 1930-1940-х гг. в генетических исследованиях стали ис­пользоваться микроорганизмы, высокие темпы размножения которых и при­менение метода селективных сред позволили повысить разрешающую спо­собность генетического анализа. Первыми объектами были грибы—дрожжи и хлебная плесень Neurospora crassa. С нейроспорой начал экспериментиро­вать молодой сотрудник Моргана К. К. Линдегрен. Первые скрещивания дрожжей рода Saccharomyces провели в 1937 г. датские исследователи О. Винге и О. Лаустсен. В конце 1940-начале 1950-х гг. наличие внутригенной рекомби­нации было неоднократно подтверждено у грибов. Сложная структура гена становилось очевидной.

Эта революция в представлениях о структуре и функции гена заверши­лась с привлечением в генетику бактерий и бактериофагов, исследование ко­торых позволило конкретизировать основные генетические процессы на мо­лекулярном уровне. Еще в 1928 г. бактериолог Ф. Гриффите (1877-1941) от­крыл трансформацию пневмококков. Он показал, что свойство патогенности Diplococcus рпеитоniае может быть передано невирулентным штаммам пнев­мококков, если их ввести мышам вместе с убитыми нагреванием клетками патогенного штамма. В 1944 г. О. Эвери, К. Мак-Леод и М. Мак-Карти иденти­фицировали трансформирующий агент как ДНК. До этого подавляющее бо­льшинство исследователей связывали наследственность с белками. Вскоре были открыты еще два процесса, ведущие к обмену генетическим материа­лом у бактерий. В 1946 г. Дж. Ледерберг и Э. Тейтум (Нобелевская премия за 1958 г.) открыли у кишечной палочки Escherichia coli своеобразный половой процесс—конъюгацию, а в 1951 г. ученик Ледерберга Н. Зиндер открыл трансдукцию—перенос генов при помощи бактериофага между различными штам­мами бактерии Salmonella typhimurium. Вскоре было получено еще одно прямое доказательство роли ДНК в наследственности. А. Херши и М. Чейз в 1952 г. показали, что при инфекции бактерии бактериофаг впрыскивает в клетку только свою ДНК, которой достаточно для развития полноценных фаговых частиц следующего поколения.

Концепция «ДНК-овой наследственности» стала логическим продолже­нием хромосомной теории, которой как будто противоречили данные о цитоплазматической наследственности, открытой в 1908-1909 гг. К. Корренсом и Э. Бауром. Некоторые гены, контролирующие пестролистность у высших растении, передавались в скрещиваниях не с ядром, а с цитоплазмой, в част­ности, с пластидами. В дальнейшем были открыты гены в митохондриях. От наследования митохондрий зависела, например, передача цитоплазматической мужской стерильности у кукурузы как это показали М. Родc в США и М. И. Хаджинов в СССР в 1930 г, и у других растений. В начале 1960-х гг. в пластидах (А. Рич и Р. Сэджер с сотрудниками), митохондриях (М. и С. Насс, 1963 г.) и некоторых других самовоспроизводящихся клеточных органеллах была найдена ДНК, отвечавшая за пластидную и митохондриальную (т. е. за органелльную) наследственность. ДНК оказалась универсальным носителем генетической информации.

Другое важное событие, ставшее основой для формирования молеку­лярной генетики, произошло в 1943 г. Дж. Бидл и Э. Тейтум (Нобелевская премия за 1958 г.), основываясь на результатах исследования биохимических мутации у нейроспоры, пришли к выводу, что гены контролируют активность ферментов, и выдвинули свой знаменитый постулат: «Один ген - один фер­мент». Этот лапидарный научный лозунг разделил сообщество биологов на тех, кто старался его доказать, и тех, кто старался его опровергнуть. В итоге стало ясно, что есть ферменты, активность которых зависит более, чем от од­ного гена, а есть гены, которые вообще не кодируют белков, например, гены транспортных или рибосомных РНК. В любом случае оказалось, что каждая биологически активная молекула белка или РНК закодирована в генетиче­ском материале.

Благодаря исследованиям трансформации бактерий и развития бактериофагов стало очевидно, что гены - это ДНК. Руководствуясь именно этой посылкой к расшифровке ее структуры приступили в послевоенный период в нескольких лабораториях. Э. Чаргафф, в 1949-1951 гг. работавший в США в Колумбий­ском университете, показал, что количество азотистых оснований в ДНК - аденина (А), тимина (Т), гуанина (Г), цитозина (Ц) следует строгой закономер­ности. Количество А=Т, а Г=Ц. Это правило Чаргаффа. Кроме того, соотно­шение (А+Т) / (Г+Ц) специфично для каждого вида. Ученик специалиста по бактериофагам С. Лурии Дж. Уотсон, приехавший из США в лабораторию Дж. Кендрью в Англии, и физик Ф. Крик, работавший в Кевендишской лабо­ратории, исходя из данных Чаргаффа и опираясь на данные рентгеноструктурного анализа, полученные в лаборатории Р. Франклин и М. Уилкинса (Ко­ролевский колледж в Лондоне), в 1953 г. опубликовали структурную модель ДНК. За это открытие в 1962 г. Уотсон, Крик и Уилкинс получили Нобелев­скую премию. Р. Франклин скончалась от рака в 1958 г. В возрасте 37-и лет. В своей работе Уотсон и Крик предложили также схему полуконсерва­тивной репликации ДНК, которую в 1957 г. доказали М. Мезельсон и Ф. Сталь. Почти в то же время (1956-1957 гг.) А. Корнберг выделил из E. coli первую ДНК-полимеразу, фермент, способный синтезировать ДНК, а С. Очао синтезировал РНК в пробирке (Нобелевская премия за 1959 г.). В да­льнейшем оказалось, что ДНК-полиме- раза Корнберга не является истинной репликазой, а отвечает за репарацию молекул ДНК. Тем не менее, это было начало исследования энзимологии репликации. По современным данным число ДНК полимераз и других белков, участвующих в воспроизведении ге­нетического материала, также как и белков репарации, достигает нескольких десятков даже у бактерий. Доказательства генетической роли и расшифров­ка структуры ДНК предоставили возможность простого объяснения приро­ды генов как участков ДНК с различной последовательностью нуклеотидов, кодирующих первичную структуру отдельных молекул белков, а также рибо­нуклеиновых кислот. В этих последовательностях есть знаки начала и конца считывания гена.

Основываясь на таких или близких к ним положениях, С. Бензер подроб­но исследовал тонкую структуру генов rIIА и rIIВ у бактериофага Т4, парази­тирующего на Е. соli. В начале 1960-х гг. Бензер показал, что в гене любая точ­ка может мутировать путем замены, вставки или выпадения пары нуклеоти­дов, могут происходить и более существенные изменения, например, делеции части или целого гена. Рекомбинация может разделять даже соседние пары нуклеотидов. Тем не менее, все аллельные рецессивные мутации можно отне­сти к одному и тому же гену на основании моргановского функционального теста. При этом рекомбинационный и функциональный критерии аллелизма страдают некоторой долей неопределенности из-за возможности внутриген­ной рекомбинации и сложных аллельных отношений (межаллельной комп­лементации) в некоторых генах, а именно, в генах, кодирующих белки, состо­ящие из идентичных субъединиц. Это явление межаллельной комплемента­ции было подробно исследовано у грибов в 50-60-е гг. XX в.

Ситуацию спасает существование мутаций по любому гену, которые принципиально не способны к межаллельной комплементации и могут слу­жить универсальными (для данного гена) тестерами для определения алле­лизма. Термины, предложенные Бензером для обозначения единицы мута­ции (мутон) и рекомбинации (рекон), представляют теперь чисто исторический интерес, поскольку речь идет об отдельных или соседних парах нуклео­тидов. Не получил распространения и термин «цистрон», вместо термина «ген», поскольку он не добавил ничего нового к представлениям о гене как о единице функции по сравнению с моргановским определением.