Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОС. ЭКЗАМЕН ПО БИОЛОГИИ.doc
Скачиваний:
48
Добавлен:
23.08.2019
Размер:
1.81 Mб
Скачать

7. Понятие о метаболической энергии и макроэргических соединениях. Роль атф в клеточном метаболизме. Механизмы субстратного и сопряженного синтеза атф.

АТФ представляет собой нуклеотидфосфат, состоящий из азотистого основания (аденина), пентозы (рибозы) и трех молекул фосфорной кислоты. Две концевые молекулы фосфорной кислоты образуют макроэргические, богатые энергией связи. В клетке АТФ содержится, главным образом, в виде комплекса с ионами магния. Аденозинтрифосфат в процессе дыхания образуется из аденозиндифосфата и остатка неорганической фосфорной кислоты (Фн) с исполь­зованием энергии, освобождающейся при окислении различных органических веществ: АДФ + Фн -> АТФ + Н2О. При этом энергия окисления органических соединений превращается в энергию фосфорной связи.

В 1939-1940 гг. Липман установил, что АТФ служит главным переносчиком энергии в клетке. Особые свойства этого вещества определяются тем, что ко­нечная фосфатная группа легко переносится с АТФ на другие соединения или отщепляется с выделением энергии, которая может быть использована на физио­логические функции. Эта энергия представляет собой разность между свободной энергией АТФ и свободной энергией образующихся продуктов (G). G - это изменение свободной энергии системы или количество избыточной энергии, которая освобождается при реорганизации химических связей. Процесс распада катализируется ферментом аденозинтрифосфатазой (АТФаза).

Существуют две гипотезы, объясняющие механизм синтеза АТФ - прямой и косвенный. Согласно прямому механизму, АДФ и Фн связываются с активным центром фермента, куда по каналу поступают протоны. Протоны взаимодействуют с кислородом Фн с образованием Н2О. Это делает Фн активным, и он присоединяется к АДФ. После этого молекула АТФ отделяется от фермента.

Согласно второй гипотезе, синтез АТФ из АДФ и Фн происходит в активном центре фермента самопроизвольно. Однако образующаяся при этом молекула АТФ прочно связывается с ферментом, поэтому для ее освобождения затрачива­ется энергия протонного градиента. Предполагают, что структурные перестрой­ки фермента, приводящие к высвобождению АТФ, связаны с циклическими про­цессами протонирования и депротонирования функционально важных групп фермента.

Сопряженное фосфорилирование. Накопление энергии окисления в АТФ при продвижении электрона по цепи переносчиков называют окислительным фосфорилированием. Механизм образования АТФ в процессе окислительного фосфорилирования объяснен благодаря работам английского биохимика Митчелла. Его теория получила название хемиосмотической. Для понимания этой теории существенным является пред­ставление о том, что мембраны являются непроницаемыми для протонов. В то же время мембраны хорошо проницаемы для воды и поэтому благодаря диссоциации в водных растворах нет дефицита протонов.

Согласно хемиосмотической теории свободная энергия, образованная при окислительно-восстановительных реакциях в дыхательной цепи, преобразуется в электрохимический градиент ионов водорода (^mН+). При этом мембрана переходит в высокоэнергетическое состояние. Ионы Н+ (протоны) переносятся: внутренней стороны внутренней мембраны на ее внешнюю сторону (из матрикса митохондрии в межмембранное пространство) с помощью переносчиков. ^mН+, в свою очередь, является источником энергии для образования АТФ из и имеет две составляющие: градиент значения рН и градиент электриче­ского потенциала. Переносчики дыхательной цепи сосредоточены на внутренней мембране митохондрии. При этом они как бы вплетены в митохондриальную мем­брану и составляют дыхательные ансамбли. Так же как в мембранах хлоропластов, переносчики, расположенные в митохондриях, неоднородны. Одни из них пере­носят протоны и электроны, а другие - только электроны. Использование пере­носчиков второго типа (переносящих электрон) возможно потому, что протоны могут находиться в водной среде клетки в свободном состоянии. В мембране мито­хондрии, также как и в мембране хлоропластов, переносчики протонов и электронов чередуются с переносчиками электронов, что имеет принципиальное значение для хемиосмотической теории. Молекула переносчика, несущая протоны и электроны, взаимодействует с переносчиком, воспринимающим только электроны, и прото­ны освобождаются в межмембранное пространство. Именно это, согласно хемиосмотической теории, лежит в основе преобразования энергии, выделяющейся в про­цессе окисления, в энергию электрохимического мембранного потенциала и далее в энергию АТФ. Согласно теории Митчелла, при переносе пары электронов от НАД на кислород они пересекают мембрану 3 раза, и этот перенос сопровождается выделением на внешнюю сторону мембраны 6 (3 пар) протонов.

Восстановленный кофермент НАДН+Н+, образующийся в реакциях цикла Кребса, располагается на внутренней стороне мем­браны митохондрий. На первом этапе ФАД воспринимает протоны и электроны от НАД и восстанавливается, образуя ФАДН2. С помощью этого фермента 2Н+ переносятся на другую (внешнюю) сторону мембраны, и здесь происходит первое раз­деление зарядов. Два протона выделяются на внешнюю сторону внутренней мембра­ны, а электроны присоединяются к переносчику (железосерный белок), с помощью которого переносятся на внутреннюю сторону мембраны. При этом происходит восстановление железа Fe3+ + ё -> Fe2+. Этот переносчик переправляет электроны снова на внутреннюю сторону мембраны. Здесь электроны акцептируются KoQ (убихинон – переносчик Н), который, заряжаясь отрицательно, захватывает двумя электронами два протона из внутренней среды. Поскольку KoQ растворим в липидах, он диффундирует к внешней стороне мембраны и выделяет там еще 2Н+ (второе разделение зарядов), а электроны передаются на цитохром b.

Предполагается, что третья пара Н+ выделяется также при переносе электронов от KoQ (убихинона) к цитохрому b. При этом участвуют 2 молекулы убихинона, которые сначала переходят в полухинон, а затем в гидрохинон (выделяется третья пара Н+). Далее электроны передвигаются по цепи цитохромов b -> с1 -> с -> аа3, содержащих железо. На заключитель­ном этапе электроны переносятся ферментом цитохромоксидазой (содержащей наряду с железом медь) на внутреннюю сторону мембраны на кислород. Кисло­род, заряжаясь, воспринимает протоны из внутренней среды с образованием Н2О:4Н++4ё+О2->2Н2О. В результате выброса ионов Н+ на внешнюю сторо­ну мембраны митохондрий и создается электрохимический градиент протонов.