Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiz_-stat_osnovy_kv_inf_dekabr_2010-_Bogdan.doc
Скачиваний:
91
Добавлен:
21.11.2019
Размер:
5.18 Mб
Скачать

3.П. Приложение. Разложение Шмидта и формализм матрицы плотности.

Пусть вектор состояния (амплитуда вероятности) составной системы зависит от переменных двух подсистем. Оказывается, что вектор состояния составной системы может быть разложен по векторам, относящимся к отдельным подсистемам. Соответствующее представление называется разложением Шмидта [1,2,37]:

(3.18)

Здесь - весовые (заведомо неотрицательные) множители, удовлетворяющие условию нормировки

Мы предполагаем, что слагаемые в разложении (3.18) представлены в порядке убывания (невозрастания) коэффициентов .

Разложение Шмидта дает наглядный математический аппарат для исследования запутанности. Например, регистрация подсистемы №1 наблюдателем в состоянии означает, что подсистема №2 с необходимостью будет зарегистрирована (наблюдателем ) в состоянии (при том же самом ).

Функции (векторы) и называются модами Шмидта. Предположим, что каждая из подсистем описывается гильбертовым пространством размерности . Тогда, каждый из наборов функций и ( ) будет полным набором, образующим ортонормированный базис.

Опишем алгоритм численной экстракции мод Шмидта. Пусть матрица размера с элементами , задающими амплитуду вероятности найти подсистемы в базисных состояниях и соответственно. Введем матрицу следующего вида:

(3.19)

Найдем собственные функции и собственные значения матрицы . В результате, рассматриваемая матрица будет представлена в виде:

, (3.20)

Здесь - унитарная матрица, составленная из собственных векторов матрицы (каждый столбец матрицы есть некоторый собственный вектор матрицы ). Матрица есть диагональная матрица, составленная из собственных значений матрицы . Будем предполагать также, что выстроены на диагонали в порядке убывания (невозрастания).

Диагональные элементы матрицы есть искомые весовые множители разложения Шмидта. При этом мода дается - ым столбцом матрицы .

Для нахождения мод введем матрицу согласно формуле:

(3.21)

В задачах высокой размерности матрица , как правило, содержит элементы, практически равные нулю. Это может приводить к формальному делению на ноль при вычислении матрицы . Для предотвращения этого явления можно поступить двумя практически эквивалентными способами. Можно вводить небольшие ненулевые слагаемые ( например, порядка - ) в диагональ . Результаты фактически не зависят от уровня «малости» вводимых величин (они нужны только для того, чтобы избежать деления на машинный ноль). Те же результаты можно получить, если «урезать» размерность матрицы , оставив в ней на диагонали только заведомо ненулевых элементов (при этом в матрице также необходимо оставить только первые столбцов).

Теперь для получения моды остается только взять - ую строку матрицы .

С использованием матриц и матрица амплитуд вероятностей может быть записана в виде:

(3.22)

где - диагональная матрица, неотрицательные диагональные элементы которой расположены в порядке убывания (невозрастания). Разложение (3.22) есть сингулярное разложение матрицы (singular value decomposition, сокращенно- svd), а параметры - сингулярные значения (singular values) матрицы.

Представленный алгоритм показывает, что определение мод Шмидта есть самосогласованная по переменным подсистем процедура. Так, каждый столбец матрицы (каждая мода ) определяется с точностью до независимого несущественного фазового множителя. Добавление такого множителя, однако, приведет, согласно (3.21), к согласованному изменению фазы моды , запутанной с исходной модой.

Задача 3.1 Явным расчетом покажите, что алгоритм, задаваемый формулами (3.19)- (3.22) действительно определяет разложение Шмидта (3.18) для составной системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]