Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
00000000000.doc
Скачиваний:
112
Добавлен:
22.09.2019
Размер:
1.95 Mб
Скачать

Всасывание лекарственных средств

Процесс всасывания представляет собой преодоление лекарственными средствами липопротеиновой плазматической мембраны клеток. В кишечнике — это один слой эпителия, при всасывании с поверхности кожи — несколько клеточных слоев. Различают следующие виды транспорта через мембраны: пассивную диффузию, активный транспорт и пиноцитоз.

Пассивная диффузия происходит по градиенту концентрации лекарственных средств — из зоны с большей концентрацией в зону с меньшей концентрацией, не требует затрат энергии макроэргов. Выделяют простую диффузию и фильтрацию через поры.

При простой диффузии лекарственные средства растворяются в липидном бислое мембран. Липидорастворимостью независимо от условий среды обладают лишь немногие вещества — ингаляционные наркозные средства, спирт этиловый. Большинство же лекарственных средств являются слабыми кислотами или слабыми основаниями и образуют как липидорастворимые нейтральные молекулы, так и водорастворимые ионы. Соотношение нейтральных молекул и ионов зависит от физико-химических свойств лекарственных средств и водородного показателя (рН) среды, в которой происходит всасывание.

У слабой кислоты с рКa=4,4(водородный показатель среды, когда половина молекул нейтральна, а другая половина диссоциирована на ионы.) содержание нейтральных молекул в желудочном соке (рН =1,4) в 1000 раз больше, чем в крови (рН=7,4), напротив, количество ионов в 1000 раз больше в крови, чем в желудочном соке. У слабого основания с таким же рКa соотношение нейтральных молекул и ионов составляет в крови 1000:1, в желудочном соке — 1:1000.

Условия всасывания лекарственных средств — слабых кислот и оснований — различные. Противовоспалительное средство ацетилсалициловая кислота имеет рКа=3,6. В кислой среде желудочного сока она присутствует в виде липидорастворимых нейтральных молекул, в щелочной среде кишечника (рН=6,8 — 7,2) — в виде водорастворимых ионов. В крови при рН=7,4 кислота ацетилсалициловая находится в ионизированной форме, поэтому плохо проникает в ткани. В очаге воспаления (ацидоз) преобладают ее нейтральные молекулы. Свойствами слабых кислот обладают также противосудорожные препараты фенобарбитал, дифенин; нестероидные противовоспалительные средства бутадион, индометацин, диклофенак; мочегонный препарат фуросемид; антикоагулянты непрямого действия; гипогликемическое средство бутамид; сульфаниламиды, пенициллины, цефалоспорины, тетрациклин.

Лекарственные средства группы слабых оснований образуют нейтральные молекулы в кишечнике, крови и клетках. Представителями слабых оснований являются алкалоиды (морфин, кодеин, папаверин, кофеин, атропин, хинин и многие другие) и синтетические азотсодержащие средства (лидокаин, анаприлин, димедрол, хлорохин).

Знание особенностей всасывания лекарственных средств с различными физико-химическими свойствами имеет большое медицинское значение.

При отравлении производными барбитуровой кислоты для ускорения их элиминации из организма проводят форсированный диурез — вливают в вену мочегонные средства и изотонические растворы глюкозы и натрия хлорида с добавлением натрия гидрокарбоната. Последний создает в первичной моче щелочную среду, в которой ускоряется диссоциация барбитуратов на ионы, не подвергающиеся реабсорбции в почечных канальцах.

При отравлении морфином и некоторыми другими алкалоидами, введенными парентерально, промывают желудок растворами слабых кислот — уксусной или лимонной, так как около 10% молекул алкалоидов простой диффузией по градиенту концентрации проникают из крови в просвет желудка, где в условиях кислой среды диссоциируют на ионы Ионы могут поступать в кишечник и вновь образовывать способные к всасыванию нейтральные молекулы. Промывание желудка направлено на повышение диссоциации и удаление нейтральных молекул алкалоидов.

Липофильные и гидрофильные свойства нейтральных молекул лекарственных средств зависят от присутствия в их структуре полярных групп. Полярные вещества плохо растворяются в липидах и менее способны к всасыванию простой диффузией.

Фильтрация лекарственных средств через поры клеточной мембраны происходит с током воды в зависимости от гидростатического и осмотического давлений. Она возможна только для нейтральных молекул, имеющих массу не более 100 — 200 Да. Это обусловлено размером пор (0,35 — 0,4 нм) и присутствием в них фиксированных зарядов. Фильтрации подвергаются мочевина, тиомочевина, глюкоза.

Активный транспорт лекарственных средств происходит против градиента концентрации (в сторону большей концентрации) с затратой энергии макроэргов и при участии белков-переносчиков.

С помощью активного транспорта переносятся лекарственные средства-эндобиотики — аналоги метаболитов организма, использующие еcтественные системы переноса. Известно, что йод поступает в фолликулы щитовидной железы против пятидесятикратного градиента концентрации: норадреналин подвергается нейрональному захвату нервными окончаниями против двухсоткратного градиента.

Возможна конкуренция лекарственных средств за связь с белками-переносчиками в процессе активного транспорта. Например, пробенецид используют для пролонгирования действия бензилпенициллина. Этот антибиотик подвергается секреции в почечных канальцах при участии белка-переносчика, высоким аффинитетом (сродством) к которому обладает пробенецид.

Лекарственные средства могут нарушать функцию ферментов активного транспорта (сердечные гликозиды блокируют мембранную Na+, К+-АТФ-азу).

Пиноцитоз: происходит инвагинация клеточной мембраны с образованием вакуоли, которая мигрирует к противоположной стороне мембраны. Таким образом всасываются полипептиды и другие высокомолекулярные соединения (витамин В12 в комплексе с гликопротеином — внутренним фактором Касла).

  1. Понятие о биодоступности лекарственных веществ. Транспорт и распределение лекарственных веществ в организме и факторы, на них влияющие. Элиминация лекарственных веществ, ее составные части. Константа скорости элиминации, период полужизни (t ½) и клиренс.

Биодоступность (обозначают буквой F) в фармакокинетике и фармакологии — в широком смысле это количество лекарственного вещества, доходящее до места его действия в организме человека (способность препарата усваиваться). Биодоступность это главный показатель, характеризующий количество потерь. То есть чем чем выше биодоступность лекарственного вещества, тем меньше его потерь будет при усвоении и использовании организмом.

РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННЫХСРЕДСТВ В ОРГАНИЗМЕ

После всасывания в кровь или непосредственного введения в кровоток лекарственные средства распределяются в водной фазе организма, включающей кровь, внеклеточную и внутриклеточную воду (70 % массы тела). У детей в связи с большим, чем у взрослых, содержанием воды в организме, возрастает объем распределения сердечного гликозида дигоксина, холиноблокатора атропина, антибиотиков-аминогликозидов. Эти препараты назначают в дозе, увеличенной на 1 кг массы по сравнению с дозой у взрослых. В пожилом возрасте количество воды снижается на 10 — 15 %. При патологическом обезвоживании объем распределения лекарственных средств уменьшается с ростом их концентрации и усилением фармакологических эффектов.

При внутривенном вливании наибольшая концентрация лекарственных средств вначале создается в органах с обильным кровоснабжением — головном мозге, сердце, печени, почках, легких, эндокринных железах, получающих 2/3 минутного объема крови. Спустя 6 — 10 мин лекарства перераспределяются в органы с меньшим кровоснабжением — скелетные мышцы и жировую ткань. При введении внутрь, в мышцы и под кожу, всасывание и распределение происходят параллельно.

Лекарственные средства транспортируются к циторецепторам и органам элиминации в форме депо с белками крови. Слабые кислоты связываются с альбуминами, слабые основания — с кислыми 1-гликопротеинами и липопротеинами

Связанная с белками фракция, не оказывая фармакологического действия, возмещает удаленные из циркуляции молекулы активной свободной фракции. Период полуэлиминации комплекса лекарственного средства с белками крови составляет всего 20 мс.

Более чем на 90 % с белками связываются β-адреноблокатор анаприлин, противоэпилептический препарат дифенин, нестероидные противовоспалительные средства, нейролептики аминазин и галоперидол, транквилизаторы хлозепид и сибазон, трициклические антидепрессанты, сердечный гликозид дигитоксин, мочегонное средство фуросемид. Специфические транспортные белки есть у витаминов, гормонов, ионов железа.

При высокой степени связывании с белками действие лекарственных средств замедляется. Повышение количества 1-гликопротеинов у пациентов с инфарктом миокарда и острыми воспалительными заболеваниями снижает эффективность фармакотерапии анаприлином, лидокаином, хинидином. Напротив, дефицит белков крови (недоношенность, гипотрофия детей, голодание, заболевания печени и почек, ожоги) сопровождается ростом доли свободной фракции и усилением фармакологического эффекта.

Лекарственные средства с выраженным аффинитетом к тканевым белкам имеют концентрацию в крови ниже, чем в органах. Известно, что нестероидные противовоспалительные средства (бутадион, диклофенак), интенсивно связываясь с белками синовиальной жидкости, через 12 ч после приема накапливаются в воспаленных суставах. Концентрация сердечных гликозидов в миокарде в 4 — 10 раз больше, чем в крови. Цефалоспорины связываются в максимальной степени с белками асцитической жидкости.

Связь с белками замедляет гломерулярную фильтрацию лекарственных средств, но мало влияет на их секрецию в почечных канальцах и биотрансформацию.

При высокой концентрации лекарственных средств наступает насыщение мест связывания на белках крови. Белковая связь играет роль в возникновении аллергических реакций.

Лекарственные средства и их полярные метаболиты выводятся из организма с мочой, калом, выдыхаемым воздухом, секретами желез. Удаление многих препаратов из клеток катализирует гликопротеин Р — фосфогликопротеин, обладающий свойствами АТФ-азы. Полипептидная цепь гликопротеина Р содержит 1280 аминокислотных остатков, образуя 12 трансмембранных доменов и 2 АТФ-связывающих центра.

В почках лекарственные средства подвергаются фильтрации, секреции и реабсорбции. Хорошо фильтруются не связанные с белками лекарства и их метаболиты с молекулярной массой не более 5 кДа. Препараты с молекулярной массой 60 кДа не способны к фильтрации. В промежуточном диапазоне молекулярной массы скорость фильтрации невелика и зависит от физико-химических свойств лекарственного средства. 4 — 10% поверхности капилляров почечных клубочков занято порами диаметром 2 — 4 нм.

Интенсивность фильтрации прямо зависит от кровоснабжения почек, АД и находится в обратной зависимости от коллоидно-осмотического давления крови и давления в капсуле клубочка. Фильтрация снижается при воспалительных и дегенеративных нарушениях в клубочках, спазме сосудов почек, сердечной недостаточности, коллапсе, шоке. Липидорастворимые лекарственные средства легче фильтруются, но затем подвергаются значительной реабсорбции в канальцах, так что их экскреция оказывается сравнительно небольшой.

В канальцах почек липидорастворимые препараты реабсорбируются простой диффузией, при этом лекарства — слабые кислоты всасываются более интенсивно при кислой реакции мочи (в норме рН мочи = 4 — 6), лекарства — слабые основания — при щелочной реакции. Модификацией химического строения лекарственных средств можно изменять их реабсорбцию. Известно, что сульфаниламидные препараты короткого действия уросульфан и этазол выводятся почками в активной форме и не реабсорбируются, создавая высокую бактериостатическую концентрацию в моче; напротив, сульфадиметоксин и сульфален полностью подвергаются реабсорбции, что значительно пролонгирует их резорбтивные эффекты.

В проксимальных извитых канальцах происходит секреция лекарств, обладающих свойствами как кислот (нестероидные противовоспалительные средства, мочегонные препараты диакарб, фуросемид, гидрохлортиазид, пенициллины, цефалоспорины), так и оснований (ганглиоблокаторы, миорелаксанты, трициклические антидепрессанты, хинидин, хинин). Секрецию осуществляют транспортеры органических анионов.

Лекарственные средства могут конкурировать между собой и с метаболитами организма за связь с белками-переносчиками. Клинические последствия такой конкуренции существенны, если секреции подвергается более 80 % лекарства, у больного нарушены фильтрация и реабсорбция. Известно, что фуросемид, замедляя секрецию индометацина и аминогликозидов, усиливает их побочные эффекты. Мочегонные средства уменьшают секрецию мочевой кислоты, что вызывает гиперурикемию и обострение латентной подагры.

У детей функции почек и экскреция лекарственных средств с мочой снижены по сравнению с показателями у взрослых людей. Фильтрация у детей достигает уровня взрослых только к 2 — 2,5 мес. жизни. Реабсорбция лекарственных средств в детском возрасте снижена вследствие уменьшенного количества нефронов и незрелости систем транспорта. Секреция лекарственных средств развивается только к 8 мес. жизни.

В пожилом возрасте возникает атеросклероз сосудов почек, на 30 % уменьшается количество функционирующих клубочков, ослабляются фильтрация и канальцевая секреция. Эти нарушения замедляют выделение почками многих лекарственных средств — кислоты ацетилсалициловой, бутадиона, дигоксина, противоаритмического препарата новокаинамида, антибиотиков (цефалоспорины, аминогликозиды).

При беременности экскреция лекарственных средств ускоряется, так как почечный кровоток возрастает вдвое, скорость клубочковой фильтрации — на 70%. Наблюдается тенденция к повышению рН первичной мочи.

В полость желудка выделяются лекарственные средства — основания (морфин). Экскреция в желчь происходит через мембраны гепатоцитов путем фильтрации (глюкоза, ионы) и активной секреции (дигоксин, ампициллин, рифампицин, тетрациклин, эритромицин). Концентрация в желчи препаратов, подвергающихся секреции, в 10 — 100 раз выше, чем в крови.

С калом выводятся вещества, не всосавшиеся в кишечнике (например, сульфиды тяжелых металлов), а также экскретированные с желчью и стенкой самого кишечника. Липидорастворимые лекарственные средства и их глюкурониды после гидролиза β-глюкуронидазой кишечных бактерий могут участвовать в энтерогепатической циркуляции.

С выдыхаемым воздухом удаляются летучие и газообразные вещества (спирт этиловый, средства для ингаляционного наркоза). Бронхиальные железы выводят анионы йода, брома, камфору. Эти вещества, раздражая бронхи, повышают их секреторную функцию и вызывают отхаркивающий эффект.

Экскреции слюнными и потовыми железами подвергаются йодиды, бромиды, препараты железа, барбитураты, салицилаты, сульфаниламиды, некоторые антибиотики. Возможно раздражение кожи (при хроническом отравлении бромидами появляется угреподобная сыпь — бромодерма). Выделение железа потовыми железами пропорционально интенсивности потоотделения и может становиться причиной гипохромной анемии.

Слезными железами выводятся антибиотики и сульфаниламиды, что находит практическое использование в офтальмологии.

При грудном вскармливании необходимо учитывать выделение лекарственных средств молочными железами. Эпителий молочных желез отделяет кровь от молока (рН=6,5 — 7), поэтому более проницаем для лекарств основного характера, которые могут накапливаться в молоке.. В молоке, представляющем собой жировую эмульсию, липидорастворимые препараты (барбитураты) концентрируются в жировой фракции.

Элиминация — это удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предварительно транспортируются в центральную камеру, а затем подвергаются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится постоянная часть от концентрации за единицу времени. При работе систем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу времени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

  • константа скорости элиминации — часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

  • период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

  • клиренс (англ. clearanceочищение) — объем жидких сред организма, освобождающихся от лекарственных средств в результате биотрансформации, выведения с желчью и мочой (вычисляется в мл/мин/кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболический — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния ферментных систем печени и интенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина — основное значение имеет печеночный кровоток, для элиминации антипсихотических средств группы фенотиазина — активность ферментных систем детоксикации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего препарата равно количеству элиминируемого. При равновесном состоянии концентрация колеблется в небольших пределах, а фармакологические эффекты проявляются в полной мере. Чем короче период полуэлиминации, тем скорее достигается равновесная концентрация и тем больше разница между максимальной и минимальной концентрациями. Обычно равновесное состояние наступает через 3 — 5 периодов полуэлиминации.

  1. Биотрансформация ЛС, микросомальное окисление, индукторы и ингибиторы микросомального окисления. Характеристика путей выведения лекарственных веществ из организма. Количественные показатели скорости выведения лекарств, их характеристика

Биотрансформация - метаболические превращения ЛС. В бол-ве р-ций обр-ся метаболиты, более полярные, чем исходные ЛС. Полярные метаболиты хуже растворяются в липидах, но обладают высокой растворимостью в воде, меньше подвергаются энтерогепатической циркуляции (выведение с желчью в кишечник и повторное всасывание в кровь) и реабсорбции в почечных канальцах.

Процессы биотрансформации разделяют на две фазы. В р-ях 1фазы — метаболической трансформации — молекулы лекарственных средств подвергаются окислению, восстановлению или гидролизу. Большинство лекарственных средств преобразуется в неактивные метаболиты, но также могут появляться активные и токсические производные. В редких случаях изменяется характер фармакологической активности (антидепрессант ипрониазид превращается в противотуберкулезное средство изониазид). Во второй фазе — реакциях конъюгации — лекарственные средства присоединяют ковалентной связью полярные фрагменты с образованием неактивных продуктов. Для реакций конъюгации необходима энергия.

1.Окисление В ЭПР функционируют НАДФ•Н- и НАД•Н-зависимые дыхательные цепи. В НАДФ•Н-зависимой системе терминальным переносчиком электронов является цитохром Р-450 — мембраносвязанный липофильный фермент группы многоцелевых монооксигеназ1, гемопротеин, состоящий из белка и системы порфирина с трехвалентным железом. Цитохром Р-450 глубоко погружен в липидный бислой мембраны ЭПР и функционирует совместно с НАДФ•Н-зависимой цитохром Р-450-редуктазой (коферменты — флавинадениндинуклеотид и флавинаденин-мононуклеотид). Активный центр этих ферментов ориентирован на цитоплазматическую поверхность ЭПР.

Цикл окисления лекарственных средств при участии цитохрома Р-450 состоит из следующих реакций: окисленный цитохром Р-450 присоединяет лекарственное средство; бинарный комплекс цитохром — лекарство восстанавливается цитохром Р-450-редуктазой, используя электрон НАДФ•Н; восстановленный комплекс цитохром Р-450 — лекарство связывается с молекулярным (триплетным) кислородом; происходит активация кислорода электроном НАДФ•Н (триплетный кислород становится синглетным); на финальном этапе один атом кислорода включается в молекулу окисляемого лекарственного средства, второй — включается в молекулу воды; цитохром Р-450 регенерирует в исходную окисленную форму. Реакция окисления ксенобиотиков при участии цитохрома Р-450 расщепляется с образованием свободных радикалов кислорода и токсических промежуточных продуктов (эпоксиды, N-, S-окиси, альдегиды). Свободные радикалы и активные интермедиаты, инициируя перекисное окисление мембранных липидов, вызывают некроз клеток, появление неоантигенов, тератогенный, эмбриотоксический эффекты, мутации, канцерогенез и ускорение старения. По этой причине не существует абсолютно безвредных ксенобиотиков. Токсические продукты биотрансформации обезвреживаются конъюгацией с восстановленным глутатионом и ковалентным связыванием с альбуминами. Повреждение молекулы альбумина не опасно для организма, так как этот белок синтезируется в печени со скоростью 10 — 16г в сут. и присутствует в высоких концентрациях в ЭПР. Ксенобиотики в процессе окисления могут разрушать цитохром Р-450.

Лекарственные средства могут как повышать, так и снижать активность микросомальных ферментов. Существует большая группа веществ, включающихся в печеночный метаболизм, активирующих, подавляющих и даже разрушающих цитохром Р450. К числу последних относятся ксикаин, совкаин, бенкаин, индерал, вискен, эралдин и т.д. Более значительной является группа веществ, индуцирующих синтез ферментативных белков печени, по-видимому, с участием НАДФ.Н2-цитохром Р450-редуктазы, цитохрома Р420, N- и О-деметилаз микросом, ионов Mg2+, Са2+, Mn2+. Это гексобарбитал, фенобарбитал, пентобарбитал, фенилбутазон, кофеин, этанол, никотин, бутадион, нейролептики, амидопирин, хлорциклизин, димедрол, мепробамат, трициклические антидепрессанты, бензонал, хинин, кордиамин, многие хлорсодержащие пестициды. Показано, что в активации этими веществами ферментов печени участвует глюкуронилтрансфераза. При этом возрастает синтез РНК и микросомальных белков. Индукторы усиливают не только метаболизм лекарственных веществ в печени, но и их выведение с желчью. Причем ускоряется метаболизм не только вводимых вместе с ними лекарственных препаратов, но и самих индукторов.

Лекарственные средства и их полярные метаболиты выводятся из организма с мочой, калом, выдыхаемым воздухом, секретами желез. Удаление многих препаратов из клеток катализирует гликопротеин Р — фосфогликопротеин, обладающий свойствами АТФ-азы. Полипептидная цепь гликопротеина Р содержит 1280 аминокислотных остатков, образуя 12 трансмембранных доменов и 2 АТФ-связывающих центра.

В почках лекарственные средства подвергаются фильтрации, секреции и реабсорбции. Хорошо фильтруются не связанные с белками лекарства и их метаболиты с молекулярной массой не более 5 кДа. Препараты с молекулярной массой 60 кДа не способны к фильтрации. В промежуточном диапазоне молекулярной массы скорость фильтрации невелика и зависит от физико-химических свойств лекарственного средства. 4 — 10% поверхности капилляров почечных клубочков занято порами диаметром 2 — 4 нм.

Интенсивность фильтрации прямо зависит от кровоснабжения почек, АД и находится в обратной зависимости от коллоидно-осмотического давления крови и давления в капсуле клубочка. Фильтрация снижается при воспалительных и дегенеративных нарушениях в клубочках, спазме сосудов почек, сердечной недостаточности, коллапсе, шоке. Липидорастворимые лекарственные средства легче фильтруются, но затем подвергаются значительной реабсорбции в канальцах, так что их экскреция оказывается сравнительно небольшой.

В канальцах почек липидорастворимые препараты реабсорбируются простой диффузией, при этом лекарства — слабые кислоты всасываются более интенсивно при кислой реакции мочи (в норме рН мочи = 4 — 6), лекарства — слабые основания — при щелочной реакции. Модификацией химического строения лекарственных средств можно изменять их реабсорбцию. Известно, что сульфаниламидные препараты короткого действия уросульфан и этазол выводятся почками в активной форме и не реабсорбируются, создавая высокую бактериостатическую концентрацию в моче; напротив, сульфадиметоксин и сульфален полностью подвергаются реабсорбции, что значительно пролонгирует их резорбтивные эффекты.

В проксимальных извитых канальцах происходит секреция лекарств, обладающих свойствами как кислот (нестероидные противовоспалительные средства, мочегонные препараты диакарб, фуросемид, гидрохлортиазид, пенициллины, цефалоспорины), так и оснований (ганглиоблокаторы, миорелаксанты, трициклические антидепрессанты, хинидин, хинин). Секрецию осуществляют транспортеры органических анионов.

Лекарственные средства могут конкурировать между собой и с метаболитами организма за связь с белками-переносчиками. Клинические последствия такой конкуренции существенны, если секреции подвергается более 80 % лекарства, у больного нарушены фильтрация и реабсорбция. Известно, что фуросемид, замедляя секрецию индометацина и аминогликозидов, усиливает их побочные эффекты. Мочегонные средства уменьшают секрецию мочевой кислоты, что вызывает гиперурикемию и обострение латентной подагры.

У детей функции почек и экскреция лекарственных средств с мочой снижены по сравнению с показателями у взрослых людей. Фильтрация у детей достигает уровня взрослых только к 2 — 2,5 мес. жизни. Реабсорбция лекарственных средств в детском возрасте снижена вследствие уменьшенного количества нефронов и незрелости систем транспорта. Секреция лекарственных средств развивается только к 8 мес. жизни.

В пожилом возрасте возникает атеросклероз сосудов почек, на 30 % уменьшается количество функционирующих клубочков, ослабляются фильтрация и канальцевая секреция. Эти нарушения замедляют выделение почками многих лекарственных средств — кислоты ацетилсалициловой, бутадиона, дигоксина, противоаритмического препарата новокаинамида, антибиотиков (цефалоспорины, аминогликозиды).

При беременности экскреция лекарственных средств ускоряется, так как почечный кровоток возрастает вдвое, скорость клубочковой фильтрации — на 70%. Наблюдается тенденция к повышению рН первичной мочи.

В полость желудка выделяются лекарственные средства — основания (морфин). Экскреция в желчь происходит через мембраны гепатоцитов путем фильтрации (глюкоза, ионы) и активной секреции (дигоксин, ампициллин, рифампицин, тетрациклин, эритромицин). Концентрация в желчи препаратов, подвергающихся секреции, в 10 — 100 раз выше, чем в крови.

С калом выводятся вещества, не всосавшиеся в кишечнике (например, сульфиды тяжелых металлов), а также экскретированные с желчью и стенкой самого кишечника. Липидорастворимые лекарственные средства и их глюкурониды после гидролиза β-глюкуронидазой кишечных бактерий могут участвовать в энтерогепатической циркуляции.

С выдыхаемым воздухом удаляются летучие и газообразные вещества (спирт этиловый, средства для ингаляционного наркоза). Бронхиальные железы выводят анионы йода, брома, камфору. Эти вещества, раздражая бронхи, повышают их секреторную функцию и вызывают отхаркивающий эффект.

Экскреции слюнными и потовыми железами подвергаются йодиды, бромиды, препараты железа, барбитураты, салицилаты, сульфаниламиды, некоторые антибиотики. Возможно раздражение кожи (при хроническом отравлении бромидами появляется угреподобная сыпь — бромодерма). Выделение железа потовыми железами пропорционально интенсивности потоотделения и может становиться причиной гипохромной анемии.

Слезными железами выводятся антибиотики и сульфаниламиды, что находит практическое использование в офтальмологии.

При грудном вскармливании необходимо учитывать выделение лекарственных средств молочными железами. Эпителий молочных желез отделяет кровь от молока (рН=6,5 — 7), поэтому более проницаем для лекарств основного характера, которые могут накапливаться в молоке.. В молоке, представляющем собой жировую эмульсию, липидорастворимые препараты (барбитураты) концентрируются в жировой фракции.

Элиминация — это удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предварительно транспортируются в центральную камеру, а затем подвергаются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится постоянная часть от концентрации за единицу времени. При работе систем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу времени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

  • константа скорости элиминации — часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

  • период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

  • клиренс (англ. clearanceочищение) — объем жидких сред организма, освобождающихся от лекарственных средств в результате биотрансформации, выведения с желчью и мочой (вычисляется в мл/мин/кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболический — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния ферментных систем печени и интенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина — основное значение имеет печеночный кровоток, для элиминации антипсихотических средств группы фенотиазина — активность ферментных систем детоксикации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего препарата равно количеству элиминируемого. При равновесном состоянии концентрация колеблется в небольших пределах, а фармакологические эффекты проявляются в полной мере. Чем короче период полуэлиминации, тем скорее достигается равновесная концентрация и тем больше разница между максимальной и минимальной концентрациями

7. Механизмы действия лекарственных веществ, их краткая характеристика. Рецепторный механизм действия лекарственных веществ, типы рецепторов. Лекарственные вещества как агонисты (в т.ч. частичные) и антагонисты лигандов. Взаимодействие лекарств со специфическими рецепторами биологически активных веществ. Роль цАМФ, фосфатидилинозитола и других вторичных медиаторов (мессенджеров) в механизмах действия лекарственных средств.

Механизм действия – это способ взаимодействия лекарственного вещества со специфическими участками связывания в организме человека.  Возможны следующие механизмы действия лекарственных веществ.

1. Физические и физико-химические механизмы. В этих случаях речь может идти об изменении проницаемости и других качеств клеточных оболочек вследствие растворения в них лекарственного вещества или его адсорбции.

2. Химические механизмы. когда лекарственное вещество вступает в химическую реакцию с составными частями тканей или жидкостей организма.

Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток.

Специальные клеточные структуры, обеспечивающие взаимодействие между лекарственным веществом и организмом, называются циторецепторами. Они имеют структуру липопротеинов, гликопротеинов, металлопротеинов, нуклеопротеинов. Концепция циторецепторов была предложена Паулем Эрлихом начале XX в.

В структуре циторецепторов присутствуют домен для связывания лигандов и эффекторный домен. Активные центры циторецепторов образованы функциональными группами аминокислот, фосфатидов, нуклеотидов, сахаров.

Лекарственные средства устанавливают с циторецепторами непрочные вандерваальсовы, ионные, водородные, дипольные по принципу комплементарности (активные группы лекарств взаимодействуют с соответствующими группами активного центра циторецепторов).

Необратимые ковалентные связи с циторецепторами образуют немногие вещества — необратимые ингибиторы холинэстеразы, тяжелые металлы.

По отношению к циторецепторам лекарственные средства обладают аффинитетом -способность образовывать комплекс с циторецепторами. В зависимости от выраженности аффинитета лекарственные средства разделяют на 2 группы:

  • агонисты — вещества с умеренным аффинитетом и высокой внутренней активностью: полные агонисты, частичные (парциальные) агонисты

  • антагонисты— вещества с высоким аффинитетом, но лишенные внутренней активности. Они препятствуют развитию клеточного ответа, усиливая эффекты других, неблокированных циторецепторов. Вещества, блокирующие активные центры циторецепторов- конкурентные антагонисты.

Циторецепторы классифицируют на 4 типа

  1. рецепторы-протеинкиназы;

  2. рецепторы ионных каналов;

  3. рецепторы, ассоциированные с G-белками;

  4. рецепторы-регуляторы транскрипции.

  1. связаны с плазматической мембраной клеток, внеклеточный домен для взаимодействия с лигандами, внутриклеточный— протеинкиназа. Фосфорилируют белки клеток — киназы, регуляторные и структурные белки. Примеры циторецепторов-протеинкиназ — рецепторы инсулина, цитокинов,

  2. повышают проницаемость мембран для Na+, K+, Са2+ и Сl-, обеспечивают мгновенный клеточный ответ. Примеры рецепторов ионных каналов: Н-холинорецепторы, ГАМКА-рецепторы.

  3. Циторецепторы, ассоциированные с G-белками- интегральные мембранные белки, включают внеклеточный N-конец и внутриклеточный С-конец, 7 трансмембранных доменов, Внеклеточные и трансмембранные домены участвуют в связывании лигандов и активации циторецепторов.

Эффекторная система представлена аденилатциклазой, фосфолипазами А2, С и D, белками ионных каналов, транспортными белками. При возбуждении рецепторов образуются внутриклеточные биологически активные вещества — вторичные мессенджеры.

Аденилатциклаза превращает АТФ во вторичный мессенджер цАМФ.

Наибольшее значение имеют следующие эффекты цАМФ:

  • активация протеинкиназ, катализирующих фосфорилирование ферментов и структурных белков клеток;

  • транспорт ионов кальция в нервные окончания, клетки желез, миокард, скелетные мышцы, тромбоциты;

Фосфолипаза С катализирует гидролиз фосфатидилинозитолдифосфата. Продукты реакции — вторичные мессенджеры инозитолтрифосфат и диацилглицерол.

Циторецепторы, связанные с фосфолипазой С:

1-адренорецепторы;

5-HT2 -рецепторы серотонина;

М1,3-холинорецепторы;

H1 -рецепторы гистамина;

Циторецепторы-регуляторы транскрипции взаимодействуют с тиреоидными, стероидными гормонами, витамином D и ретиноидами. Транспортные белки крови передают лиганды клеточным белкам, затем комплексы поступают в ядро. Функции рецепторов — активация или ингибирование транскрипции генов.

Рецепторную функцию выполняют также мембраносвязанные и растворимые ферменты (дигидрофолатредуктаза, ацетилхолинэстераза, моноаминоксидаза, циклоксигеназа), транспортные белки (Na+, К+-АТФ-аза) и структурные белки (тубулин).

8. Виды действия лекарственных веществ. Характеристика местного, рефлекторного, резорбтивного, избирательного (элективного) и общеклеточного действия. Характеристика прямого и косвенного, обратимого и необратимого, главного и побочного действия.

Местное и резорбтивное действие

Местное действие — эффекты лекарственных средств на месте применения (потеря болевой и температурной чувствительности под влиянием местных анестетиков; боль, гиперемия).

Резорбтивное действие — после всасывания в кровь и проникновения через гистогематические барьеры (анальгезия при применении наркозных средств, наркотических и ненаркотических анальгетиков).