Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все блять.doc
Скачиваний:
5
Добавлен:
19.09.2019
Размер:
12.32 Mб
Скачать

2.Рух зарядженоїчастинки в однорідних полях

Выражение для силы Ампера можно записать в виде: 

F = q n S Δl υB sin α.

Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна 

FЛ = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью Прямоугольник 61  и вектором магнитной индукции   Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика

Сила Лоренца направлена перпендикулярно векторам  При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость   лежит в плоскости, перпендикулярной вектору   то частица будет двигаться по окружности радиуса 

Сила Лоренца в этом случае играет роль центростремительной силы

Период обращения частицы в однородном магнитном поле равен 

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R.

Угловая скорость движения заряженной частицы по круговой траектории 

Билет 19

Закони Кірхгофа для змін­ного струму

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt - ψ2) = Im sin(ωt + ψ).

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для переменных напряжений

Калибровочная Инвариантность

- инвариантность относительно калибровочных преобразований. К. и. имеет место в тех случаях, когда не все поля, участвующие в формулировке теории, отвечают наблюдаемым величинам. Напр., электрон-позитронное и фотонное поля в электродинамике описываются соответственно комплексными Дирака полямиy(x), и четырёхмерным вектор-потенциалом Am(x) (m=0, 1, 2, 3), тогда как наблюдаемым величинам отвечают билинейные комбинации комплексных полей типа и тензор напряжённости эл.-магн. поля . Эти величины не меняются при переходе от полей к полям , получающимся из исходных с помощью калибровочных преобразований. Калибровочные преобразования оставляют неизменными и ур-ния Максвелла - Дирака, описывающие взаимодействующие электрон-позитронное и фотонное поля. Поэтому все наблюдаемые величины, напр, уровни энергии и сечения разл. процессов, вычисленные с помощью полей и с помощью исходных полей , совпадают.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]