Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции сф-3-6.docx
Скачиваний:
20
Добавлен:
05.08.2019
Размер:
241.51 Кб
Скачать

7. Ионный обмен

Ионный обмен можно рассматривать как гетерогенную химическую реакцию и представить в виде примера следующими уравнениями:

а) катионный обмен:

RH + Na+ т±Н+ …+ RNa; (1)

б) анионный обмен:

2RO + SO; 2t R2S04 + 2С1. (2)

Промежуточное положение между катионитами и анионитами занимают амфолиты, которые включают кислотные и основные ионогенные группы, выступая (в зависимости от условий проведения процесса) в роли катионита или анионита.

В соответствии со степенью ионизации в растворе катиониты делятся на сильнокислотные (КУ) и слабокислотные (КБ); аниониты подразделяют на высокоосновные (АВ) и низкоосновные (АН).

По степени пористости синтетические иониты можно подразделить на гелевые и макропористые. Макропористые иониты обладают гораздо более развитой пористой структурой, чем гелевые, что значительно ускоряет транспорт вещества внутри гранулы.

При контакте ионообменных смол с растворами электролитов подвижные противоионы замещаются на эквивалентное количество ионов раствора электролита, например по уравнениям (1) и (2). В зависимости от противоиона, которым насыщена ионообменная смола, различают Н-форму, Na-форму, Са-форму и т. п. для катионитов и соответственно ОН-форму, Q-форму и т. п. для аннонитов. Отметим, что активные группы находятся во всем объеме ионитов. Трехмерная структура ионита представляет собой как бы губку, в порах которой при набухании находятся растворитель и противоионы. Для обмена ионы раствора должны продиффундировать в матрицу и обменяться с ее противоионами.

Кинетические свойства ионообменных смол и их обменная емкость зависят также от строения матрицы. В зависимости от сшивки углеводородных цепей меняется набухаемость ионита. Увеличивая степень сшивки, можно добиться такого размера элементарной ячейки матрицы, когда диффузия ионов внутрь ионита будет невозможна из-за их размеров. В этом случае ионный обмен возможен только на поверхности частицы ионита. Матрица ионита вместе с фиксированными ионами в растворах представляет собой твердый нерастворимый полином, заряд которого компенсируется зарядами противоионов противоположного знака. У катионитов фиксированные ионы заряжены отрицательно, у аннонитов-положительно.

Сильнокислотные катиониты способны к обмену ионов в щелочной, нейтральной, кислой средах. В качестве фиксированных ионов сильнокислотные компоненты обычно содержат группу SO3.

Слабокислотные катиониты способны к обмену катионов только при рН > 7. В качестве фиксированных ионов они имеют различные слабодиссоциирующие группировки, например — COO ~.

Сильноосновные аниониты способны к обмену в широком диапазоне рН. Эти анионы наиболее часто содержат в качестве фиксированных ионов группу N+.

Слабо основные аниониты способны к обмену анионов только при рН < 7. К ним относятся аниониты с первичными, вторичными и третичными аминогруппами: —NH3, =NH2 , =NH+.

Некоторые иониты содержат одновременно сильно- и слабо-диссоциирующие активные группы.

Ионообменные смолы обладают большой емкостью, химической стойкостью и механической прочностью. Изменяя состав активных групп и матрицы, получили ионообменные смолы самых различных свойств.

Равновесие при ионном обмене. Сорбционную способность ионитов оценивают полной обменной емкостью, рабочей и равновесной обменной емкостью. Полная обменная емкость равняется общему числу ионогенных групп на единицу массы или объема ионита и представляет собой предельную сорбционную способность ионитов. Рабочая емкость не является чисто статической (равновесной) характеристикой ионита, так как представляет собой среднюю рабочую концентрацию сорбированного иона, отнесенную ко всему объему ионита в неподвижном слое при проведении неравновесного сорбционного процесса. Рабочая концентрация зависит как от статических факторов, так и от скорости массопередачи.

Равновесная концентрация в ионите меньше полной обменной емкости, когда обратная реакция ионного обмена считается полностью подавленной. На равновесную концентрацию влияют все факторы, определяющие химическое равновесие реакции ионного обмена, включая величину рН и температуру.

Равновесные концентрации контактирующих фаз в процессах ионного обмена, как и в случае адсорбции, связаны уравнением изотермы. Наиболее часто уравнение изотермы устанавливают на основе закона действующих масс.

Кинетика ионного обмена. Приведенный ранее анализ кинетики адсорбции в неподвижном слое сорбента применим и для ионного обмена. Как и в случае адсорбции, задача нахождения профиля концентраций в контактирующих фазах, длины слоя или времени процесса заключается в решении системы уравнений материального баланса, кинетики и изотермы (1).

Кинетика ионного обмена в неподвижном слое адсорбента, как и в случае адсорбции, может быть описана основным уравнением массопередачи. Отличительной особенностью кинетики ионного обмена является наличие стадии гетерогенной химической реакции, скорость которой обычно выше скорости диффузионных стадий процесса. Кроме того, следует учесть, что при ионном обмене скорость массопередачи часто лимитируется внутренним массопереносом.