Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции сф-3-6.docx
Скачиваний:
20
Добавлен:
05.08.2019
Размер:
241.51 Кб
Скачать

4.3. Перенос лучистой энергии в поглощающей и излучающей среде

Продукты сгорания топлив представляют собой смесь нескольких газов. Различные газы обладают различной способностью излучать и поглощать энергию. Одно- и двухатомные газы (кислород, азот и др.) практически прозрачны для теплового излучения. Значительной способностью излучать и поглощать энергию излучения обладают многоатомные газы: диоксид углерода и серы, водяной пар, аммиак и др. Наибольший интерес представляют сведения об излучении диоксида углерода и водяного пара, образующихся при сгорании топлив. Интенсивностью их излучения в основном определяется теплообмен раскаленных газообразных продуктов сгорания с обогреваемыми телами в топках.

С ростом температуры, когда максимум излучения смещается в область коротких волн, степень черноты уменьшается. Поскольку степень черноты газа er существенно зависит от температуры, «закон четвертой степени» Стефана-Больцмана строго не выполняется. Так, плотность черноты потока ЕН2О ~Т3, а ЕСО2~Т3,5.

Излучение газов носит объемный характер. Способность газа излучать энергию изменяется в зависимости от плотности и толщины газового слоя. Чем выше плотность излучающего компонента газовой смеси, определяется парциальным давлением p, и чем больше толщина слоя газа l, тем больше молекул принимает участие в излучении и тем выше его излучательная способность и коэффициент поглощения. Поэтому степень черноты газа er обычно представляют в виде зависимости от произведения pl или приводят в номограммах. Поскольку полосы излучения диоксида углерода и водяных паров не перекрываются, степень черноты содержащего их топочного газа в первом приближении можно считать по формуле:

er=eco2+eH2O.

Излучение чистых газов находится в инфракрасной части спектра. Имеющиеся в продуктах сгорания раскаленные твердые частицы придают пламени видимую окраску, и его степень черноты может быть большой, достигая значений 0,6 - 0,7. Основное количество теплоты в топках передается излучением пламени.

5. Теплопередача

В технике часто приходится рассчитывать стационарный процесс переноса теплоты от одного теплоносителя другому через разделяющую стенку. Такой процесс называется теплопередачей.

5.1. Плоская стенка

Рассмотрим теплопередачу между двумя жидкостями через разделяющую их многослойную плоскую стенку. Здесь передача теплоты делится на три процесса:

1) В начале теплота передается от горячего теплоносителя tж1 к поверхности стенки путем конвективного теплообмена, который может сопровождаться излучением. Интенсивность процесса теплоотдачи характеризуется коэффициентом теплоотдачи a1.

d1

d2

dn

tЖ1

tЖ2

tC1

tC2

tC3

tcn

tC(n+1)

l1

l2

ln

t

Жидкость 1

Жидкость 2

2) Затем теплота теплопроводностью переносится поочередно от одной поверхности стенки к другой, которая характеризуется коэффициентом теплопроводности l(l1,…,ln).

Рис. 5.1 - Распределение температур при теплопередаче через многослойную плоскую стенку

3) И, наконец, теплота опять путем конвективного теплообмена передается от поверхности стенки к холодной жидкости tж2. Этот процесс характеризуется коэффициентом теплоотдачи a2.

При стационарном режиме плотность теплового потока во всех трех процессах одинакова и может быть записана следующим образом:

1. по закону Ньютона - Рихмана

,

2. по закону Фурье

,

3. по закону Ньютона - Рихмана

,

где и - термическое сопротивление внешней теплоотдачи соответственно от горячего теплоносителя к стенке и от стенки к холодному теплоносителю.

Из вышеприведенных уравнений составив систему уравнений:

,

и сложив правые и левые части, получим уравнения теплопередачи через многослойную плоскую стенку:

или

, (5.1)

где - температурный напор, заданный условиями задачи;

Rk - термическое сопротивление теплопередачи от горячего теплоносителя к холодному.

Величина, обратная Rk, называется коэффициентом теплопередачи К:

, (5.2)

Коэффициент теплопередачи К характеризует интенсивность процесса теплопередачи от горячего теплоносителя к холодному через разделяющую их стенку.

Тогда уравнение теплопередачи можно записать:

или

Граничные температуры определяются следующим образом:

, (5.3)

Очевидно, что для однослойной плоской стенки формулы справедливы, где , , tc(n+1)=tc2.