Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii20-30(1).doc
Скачиваний:
137
Добавлен:
16.05.2015
Размер:
3.11 Mб
Скачать

Молекулярный механизм мышечного сокращения

В ответ на нервный импульс происходит выброс ионов кальция из саркоплазматического ретикулума (СПР). Эти ионы связываются с лёгкими цепями миозина, при этом в головке расщепляется АТФ и головка готова присоединиться к актину. Ионы кальция затем связываются с тропонином С и меняют его конформацию. Эти изменения в силу эффекта кооперации передаются на субъединицу I и блокируют её. Далее изменения достигают субъединицы Т, которая и сдвигает в сторону молекулу тропомиозина, освобождая сразу 7 молекул актина. Головка миозина соединяется с актином, и образуется «поперечный мостик». Как только это произошло, АДФ и Фн уходят, головка наклоняется в сторону М-линии и тянет за собой тонкую нить. Затем к головке миозина присоединяется новая молекула АТФ, головка отделяется от нити актина, а гидролиз АТФ возвращает головку в вертикальное положение. Далее всё повторяется. Информацией о конце сокращения служит снижение концентрации ионов кальция в СПР. Тогда кальциевый насос и белок кальсеквестрин убирают избыток ионов кальция из цитоплазмы в СПР. Мышца переходит в состояние покоя (см. рис. 30.5).

Рис. 30.5. Молекулярный механизм мышечного сокращения

Особенности гладких мышц:

  • сократительный аппарат не содержит тропониновой системы, а содержит специальный белок кальдесмон, который выполняет функцию тропонина;

  • миозиновая АТФазная активность в 10 раз ниже;

  • миозин может соединяться с актином только при условии фосфорилирования лёгких цепей;

  • богаты белками стромы, но бедны фосфолипидами и макроэргами.

Гладкие мышцы — медленные, но способны длительно поддерживать напряжение.

Кроме того, они похожи на сердечную мышцу тем, что сокращаются непроизвольно.

Источники энергии мышечного сокращения

В состоянии покоя. Свободные жирные кислоты (СЖК) и кетоновые тела (КТ).

При умеренной нагрузке. СЖК + КТ + глюкоза крови.

При максимальной нагрузке. СЖК + КТ + глюкоза крови + гликоген мышц.

Механизмы энергообеспечения мышечного сокращения

  1. Основной регулятор энергетики мышечной клетки — это отношение [АТФ]/[АДФ] + [Фн]. В покое концентрация АТФ высокая, а АДФ — низкая, в результате чего тормозится активность ключевых ферментов гликолиза, цикла Кребса и работа дыхательной цепи. С началом работы мышц концентрация АТФ падает, а АДФ возрастает, что приводит к активации вышеназванных процессов.

  2. Накапливающийся при работе мышц лактат поступает из крови в печень, где путём глюконеогенеза превращается в глюкозу. Последняя выходит сначала в кровь и может давать при своем окислении АТФ, а затем поступает в мышцы, где восстанавливает запас гликогена. В свою очередь при распаде гликогена до глюкозы и ее последующих превращениях также образуется АТФ.

  3. Аденилаткиназная (миокиназная) реакция:

2 АДФ АТФ + АМФ

АТФ используется для мышечного сокращения, а АМФ стимулирует гликолиз.

  1. Креатинкиназная реакция:

Креатин + АТФ↔КФ + АДФ

Покоящиеся мышцы содержат в 10–20 раз больше КФ, чем АТФ, но КФ, в отличие от АТФ, не может использоваться мышцами для сокращения. Роль КФ заключается в том, что он является не только транспортной формой энергии в мышцах, но и отдаёт свою богатую энергией связь АДФ для образования АТФ, который и расходуется при сокращении. Это система быстрого реагирования: она включается первой при нехватке АТФ в мышцах. Запаса КФ хватает только на 10 секунд, но за это время запускаются 1–3-й механизмы. Особенно эта система важна для миокарда, так как он очень чувствителен к недостатку кислорода и имеет исключительно аэробный характер обмена в отличие от скелетной мускулатуры.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]