Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
14
Добавлен:
27.03.2015
Размер:
1.4 Mб
Скачать

28И29Теоремы Ролля, Лагранжа, Коши

Теорема Ролля

Пусть функция f: [a, b] → R непрерывна на сегменте [a, b], и имеет конечную или бесконечную производную внутри этого сегмента. Пусть, кроме того, f(a) = f(b). Тогда внутри сегмента [a, b] найдется точка ξ такая, что f'(ξ) = 0.

Теорема Лагранжа

Если функция f: [a, b] → R непрерывна на сегменте [a, b] и имеет конечную или бесконечную производную во внутренних точках этого сегмента, то такое, что f(b) - f(a) = f'(ξ)(b - a).

Теорема Коши

Если каждая из функций f и g непрерывна на [a, b] и имеет конечную или бесконечную производную на ]a, b[ и если, кроме того, производная g'(x) ≠ 0 на ]a, b[, то такое, что справедлива формула

Если дополнительно потребовать, чтобы g(a) ≠ g(b), то условие g'(x) ≠ 0 можно заменить менее жестким:

30Тейлора формула

Тейлора формула

        формула

        

        

        изображающая функцию f (x), имеющую n-ю производную f (n)(a) в точке х = а, в виде суммы многочлена степени n, расположенного по степеням ха, и остаточного члена Rn (x), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a) n [то есть Rn (x) = an (x)(xa) n, где an (x) → 0 при ха]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x) можно представить в видах:

        

        ,

        где ξ и ξ1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а Соприкосновение не ниже n-го порядка с графиком функции f (x). Т. ф. применяют для исследования функций и для приближённых вычислений.

31Раскрытие неопределенностей. Правило Лопиталя

1. Неопределенность вида 0/0. Первое правило Лопиталя.

Если = 0, то , когда последний существует.

2. Неопределенность вида ¥/. Второе правило Лопиталя.

Если = ¥, то , когда последний существует.

3. Неопределенности вида 0× ,  - , 1и 00 сводятся к неопределенностям 0/0 и ¥/ путем алгебраических преобразований.

Пример 3.25.Найти предел функции y =при x  0.

Решение. Имеем неопределенность вида -. Сначала преобразуем ее к неопределенности вида 0/0, для чего достаточно привести дроби к общему знаменателю. К полученному выражению два раза применим правило Лопиталя. Записывая последовательно все промежуточные вычисления, будем иметь:

= = == ==.

Пример 3.26. Найти .

Решение. Раскрывая неопределенность вида / по правилу Лопиталя, получаем:

= = =0.

Пример 3.27. Вычислить .

Решение. Имеем неопределенность вида 1. Обозначим искомый предел через A. A = .

Тогда lnA= = = = 2, 

32Точки экстремума

   Точка x0 называется точкой строгого локального максимума (минимума) функции f (x), если для всех значений аргумента из некоторой достаточно малой δ - окрестности точки х0 выполняется неравенство

f (x) < f (x0) ( f ( x) > f ( x0 ) )

при хx0.    Локальный максимум и локальный минимум объединяются общим названием экстремум. Из определения следует, что понятие экстремума носит локальный характер в том смысле, что неравенство f ( x) < f ( x0) ( f (x) > f ( x0 )) может и не выполняться для всех значений х в области определения функции, а должно выполняться лишь в некоторой окрестности точки x0.    Очевидно, функция может иметь несколько локальных максимумов и несколько локальных минимумов, причем может так случиться, что иной локальный максимум окажется меньше какого-то другого локального минимума.    В точках экстремума приращение функции имеет определённый знак. Если Δ f = f ( x0 + h ) − f ( x0) ≥ 0 для достаточно малых значений h, то точка х0 является точкой локального минимума. Если Δ f = f ( x0 + h ) − f (x0) ≤ 0 для достаточно малых значений h, то точка х0 является точкой локального максимума. Точки экстремума это точки графика функции, которые отделяют участки определённой монотонности друг от друга.    Ниже приведены виды точек экстремумов. В первых двух функция определена и производная существует, такие точки называются стационарными.     Функция в точках экстремума определена, однако производной в точке экстремума может не существовать.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]