Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вирусология теория.docx
Скачиваний:
24
Добавлен:
08.09.2023
Размер:
224.54 Кб
Скачать

8. Возможные пути эволюции вирусов

Ответ. Вирусы, являясь генетическими паразитами и представляя собой несовершенную форму жизни, подчиняются законам эволюции органического мира и обладают необходимыми атрибутами жизни − наследственностью и изменчивостью, а также подвержены естественному отбору. Изменчивость вирусов затрагивает различные биологические свойства − морфологию, антигенную структуру, иммуногенность, тканевой тропизм, патогенность, круг восприимчивых хозяев, биохимические свойства, устойчивость к физическим и химическим воздействиям. Основу наследственной изменчивости вирусов составляют изменения их генетического материала. Как генетический материал ДНК и РНК обладают разным эволюционными возможностями, так как с разной эффективностью реализуют внутренние источники наследственной изменчивости. Внутренними источниками изменений являются спонтанные генные мутации и рекомбинационные процессы, включающие интеграционные взаимодействия с геномом хозяина. Мутации (точковые и множественные) представляют собой изменение генетического кода в результате замены (транзиции, трансверсии), выпадения (делеции) или вставки (инсерции) одного или нескольких нуклеотидов в геномной последовательности. Большинство мутаций носит нейтральный характер. К изменению фенотипа ведут только мутации, затрагивающие функционально активные последовательности белковой молекулы. По изменению фенотипа различают летальные, условно-летальные и нелетальные мутации. Примером летальных делеционных мутантов вирусов служат ДИ-частицы, условно-летальных − температурочувствительные (ts) мутанты. Нелетальные мутации обеспечивают антигенный дрейф и определяют существование различных серотипов и генетических вариантов вирусов. В естественных условиях размножения движущей силой изменчивости вирусов являются спонтанные мутации, частота которых существенно варьирует внутри различных генетических групп вирусов. Относительно низкая мутабельность ДНК-геномных вирусов компенсируется высокой численностью вирусных популяций, где имеет значение не столько частота возникновения мутаций, сколько их абсолютное количество. Различают два механизма мутагенеза − ошибка включения и ошибка репликации. В первом случае причиной мутаций является присутствие в клетке веществ, обладающих мутагенным действием − аналогов нуклеотидных оснований, свободных радикалов, перекисей и т. д. Во втором случае причина заложена в точности воспроизведения геномной нуклеиновой кислоты в процессе репликации. В отличие от ДНК-содержащих вирусов, РНК-содержащие обладают повышенной мутабельностью. Это свойство определяется химическим составом, структурой и способом репликации РНК, исключающим возможность исправления ошибок на неповрежденной комплементарной цепи. Рекомбинация − физическое взаимодействие между вирусными геномами в смешанно-зараженной клетке, при котором потомство, называемое рекомбинантами, содержит последовательности нуклеотидов, происходящие от обоих родителей. Различают два вида взаимодействий между геномами − внутримолекулярную рекомбинацию и реассортацию. Внутримолекулярная рекомбинация представляет собой перераспределение последовательностей внутри одной молекулы геномной нуклеиновой кислоты. Установлена как для непрерывных, так и для сегментированных геномов, независимо от вида нуклеиновой кислоты. У ДНК-содержащих вирусов внутримолекулярная рекомбинация является основной причиной эволюционных изменений и происходит обычным образом по механизму разрыв-воссоединение. Кроме этого, источником наследственной изменчивости вирусов может служить включение в вирусный геном генетического материала хозяина, которое наблюдается при интегративной вирусной инфекции. У РНК-геномных вирусов в основе внутримолекулярной рекомбинации лежит механизм смены матрицы путем так называемого «прыжка» РНК-полимеразы на гомологичную область нуклеотидной последовательности. Рекомбинационные взаимоотношения могут наблюдаться на уровне одного вируса, между разными серотипами вируса и между разными вирусами. Описана внутримолекулярная рекомбинация между сегментами РНК трипартитного бромовируса растений, когда дефектный 3'-конец одной нити РНК был восстановлен за счет рекомбинации с 3'-концом другого РНК-сегмента. Подтверждением межтиповой рекомбинации служит обнаружение природных штаммов полиовируса вакцинного происхождения, геном которых содержал последовательности генома всех трех серотипов вируса. Такие рекомбинанты возникают при вакцинации живой пероральной поливалентной полиовирусной вакциной, что создает возможность заражения одной клетки кишечника всеми тремя полиовирусами с последующей сменой матрицы РНК-полимеразой в процессе их репликации. Эволюция вирусов базируется на тех же принципах, что и эволюция живых организмов, где выделяют микроэволюцию, видообразование и макроэволюцию. Микроэволюция − эволюционные процессы внутри популяции и вида, которые базируются на принципе нейтральности молекулярной эволюции. Суть этой теории, применительно к вирусам, заключается в том, что изменения генетического материала, возникающие на протяжении значительного числа поколений, не влияют на функциональные свойства вируса, изменяются лишь частные признаки, не влияющие на стратегию вирусного генома. Возникновение нейтральных и псевдонейтральных мутаций, происходящее в периоды так называемого относительного покоя, может приводить к вспышкам эволюционной активности − микроскачкам. В процессе микроскачков происходит образование селективно ценных мутантов и рекомбинантов, которые обеспечивают дальнейшее процветание и распространение вируса среди хозяев. Примером эволюционно ценной мутации может быть одна точковая мутация в гене гемагглютинина вируса гриппа птиц, заменившая участок гликозилирования. Такая единственная точковая мутация привела к увеличению вирулентности вируса, что вызвало развитие эпизоотии среди домашних птиц на Американском континенте в 1982 г. Постепенное накопление в геноме нейтральных мутаций и рекомбинационные процессы, обусловленные естественными механизмами изменчивости, приводят к увеличению эволюционного потенциала вируса и создают условия для качественного перехода или «большого скачка». В общей теории эволюции процесс внезапного образования организмов с новыми свойствами называется квантовым видообразованием. «Большой скачок» у вирусов проявляется внезапным появлением стабильного мутанта или рекомбинанта с новыми свойствами, способного быстро распространиться среди неиммунных хозяев, вызвать эпидемии неизвестных болезней. Примером появления нового вируса является вирус гриппа свиней. Его образование проявилось внезапной вспышкой заболевания у свиней, зафиксированного после пандемии гриппа 1918 г. Существует достаточно доказательств, что вирус гриппа свиней − это результат или реассортации с участием пандемических штаммов вируса гриппа человека или адаптации человеческого вируса к свиньям. Благодаря высокой мутабельности генетического материала эволюция РНК-геномных вирусов идет чрезвычайно быстро, что может привести к разрушению генетической структуры вируса под влиянием избыточности мутаций и служить внутренней причиной вымирания вирусов. Нейтральный характер молекулярной эволюции замедляет этот процесс и служит защитой РНК-геномных вирусов от форсированной эволюции. Однако барьер, установленный нейтральностью мутаций, может быть преодолен за счет их избыточности и накопления псевдонейтральных мутаций. Также, как и в случае квантового видообразования, накопление вредных изменений может привести к скачку, сопровождающемуся резкой перестройкой генома и внезапными функциональными нарушениями в жизненно важных белках. Жизнеспособность вируса снижается, создаются предпосылки для исчезновения вируса. Подтверждением существования таких процессов служит внезапное прекращение эпидемий и исчезновение эпидемических штаммов вируса гриппа A при наличии восприимчивого населения. Внезапное прекращение циркуляции доминировавших штаммов вируса нельзя объяснить только давлением коллективного иммунитета. Предполагается, что шифтовые штаммы вируса гриппа заходят в эволюционный тупик. Молекулярная эволюция таких вирусов проходит неблагоприятно, что накладывает ограничения на продолжительность жизни вируса. Шифтовые варианты вируса гриппа способны пройти лишь ограниченное число генераций, не могут бесконечно передаваться от хозяина к хозяину, что приводит к их вымиранию. Остается неясным, распространяется ли процесс вымирания, которому подвержены отдельные штаммы РНК-геномных вирусов, на популяции в целом и вид вируса. Нельзя исключить, что время существования известных на сегодня РНК-содержащих вирусов ограничено. Вирусы подвергаются дивергентной эволюции, итогом которой являются изменения в нуклеотидном составе, которые могут привести к снижению жизнеспособности вида. Важное значение для эволюции вирусов имеет деятельность человека, направленная на прекращение их циркуляции среди населения. Это достигается за счет повышения уровня коллективного иммунитета под влиянием массовой иммунизации. В частности, это касается возбудителей таких заболеваний, как полиомиелит и корь, вакцинопрофилактика которых носит крупномасштабный и постоянный характер. Макроэволюция − эволюция на уровне более высоких, чем вид, систематических категорий. Этот процесс у вирусов приводит к образованию родов, семейств, порядков. На уровне макроэволюции вирусов реализуется еще один из законов, управляющих ходом эволюционных процессов, а именно − консервация блоков наследственной информации. Эти блоки перемещаются от таксона к таксону и в настоящее время функционируют в отдаленных хозяевах. Так у РНК-геномных вирусов растений, относящихся к разным семействам, и у ряда вирусов позвоночных наблюдается высокая степень сходства белков полимеразного комплекса (вирус коровьего гороха и вирусы ящура и полиомиелита). Комплекс обратной транскрипции встречается у вирусов животных и растений − ретровирусов, гепаднавирусов. Сходные по строению РНК-хеликазы также встречаются как у вирусов растений, так и у вирусов животных. Консервация генов и многократное использование блоков наследственной информации связано с тем, что эволюция нашла оптимальный способ решения проблемы. Наличие таких общих генов у групп вирусов, по всей вероятности, отражает прошлые биологические взаимоотношения этих вирусов с клеточными организмами.