Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗ / Ответы на экзамен БХ.doc
Скачиваний:
36
Добавлен:
15.07.2023
Размер:
22.96 Mб
Скачать

44. Микросомальное окисление.

Наряду с тканевым дыханием, в которое вовлекается от 80% до 90% потребляемого человеком кислорода, в организме постоянно протекают и другие реакции с участием кислорода, в том числе микросомальное и свободнорадикальное окисление.

Микросомальное окисление не связано с синтезом АТФ. Механизм данного типа окисления субстрата кислородом предусматривает такое взаимодействие субстрата (S) с молекулярным кислородом, при котором один атом кислорода включается в окисляемый субстрат, другой – в молекулу воды. За счёт включения кислорода в молекуле окисляемого субстрата возникает гидроксильная группа (-ОН), поэтому данный вид окисления называется гидроксилированием. SН + О2 + А∙Н2 → S-ОН + Н2О + А где SН – окисляемый субстрат; А∙Н2 – донор водорода (аскорбиновая кислота или НАДФ∙Н2).

Микросомы - морфологически замкнутые везикулы, в которые превращается эндоплазматический ретикулум при гомогенизацип тканей. Следовательно, микросомную фракцию, выделяемую при дифференциальном центрифугировании гомогенатов, образуют преимущественно мембраны эндоплазматического ретикулума и некоторые другие субклеточные структуры (например, рибосомы).

На рисунке в общей форме представлена цепь переноса электронов в микросомах, при участии которой осуществляется гидроксилирование. Как видно из этого рисунка, имеются две точки цепи, где участвует НАДФН2: первый раз он поставляет атом водорода и протон для образования воды, второй - отдает электрон для восстановления цитохрома Р-450 (в переносе электрона на цитохром участвуют флавопротеид и белок, содержащий негеминовое железо). Считается, что цитохром Р-450 выполняет двоякую функцию. Во-первых, он связывает субстрат гидроксилирования, во-вторых, на нем происходит активация молекулярного кислорода.

Биологическая роль микросомального окисления: 1. Синтез различных веществ. Растворимые ферменты с участием аскорбиновой кислоты в качестве донора водорода осуществляют синтез адреналина и норадреналина в хромаффинной ткани; пигмента меланина из тирозина в коже, радужке и сетчатке глаза; основного белка соединительной ткани – коллагена. Ферменты микросом участвуют в образовании ненасыщенных жирных кислот; желчных кислот и стероидных гормонов надпочечников из холестерина, лейкотриенов из арахидоновой кислоты. 2. ^ Обезвреживание различных токсических веществ в печени. Особенно это относится к чужеродным веществам не природного происхождения, называемым ксенобиотиками. При микросомальном окислении токсические вещества становятся водорастворимыми, в результате они не накапливаются в клетке, а легко выводятся с мочой.

45.Окислительное фосфорилирование. Теория сопряжения. Влияние ядов на тканевое дыхание и окислительное фосфорилирование

Окислительное фосфорилирование синтез молекулы АТФ из АДФ и фосфора ферментом АТФ-синтазой.

Строение АТФ: -F0 (канал для прохождения Н+

-F1 (синтез молекулы АТФ)

При прохождении Н+ через F0 субъединицу синтезируется АТФ, но энергия для синтеза АТФ образуется в результате мест сопряжения, где разница окислительно-восстановительного потенциала достаточна для активации работы АТФ-синтазы.

Так как электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается снижением свободной энергии.

При сравнении величин электрохимических потенциалов переносчиков электронов снижение свободной энергии происходит на каждом этапе ЦПЭ, и энергия электронов выделяется порциями.

Вместе с тем в дыхательной цепи можно выделить 3 участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии (см рисунок 1). Эти этапы способны обеспечить энергией синтез АТФ, так как количество выделяющейся свободной энергии приблизительно равно энергии, необходимой для синтеза АТФ из АДФ и фосфата. Экспериментально было подтверждено, что процесс переноса электронов по ЦПЭ и синтез АТФ энергетически сопряжены.

Первый процесс - перенос электронов от восстановленных коферментов NADH и FADH2 через ЦПЭ на кислород — экзергонический. Второй процесс - фосфорилирование АДФ, или синтез АТФ, - эндергонический:

Рис. 1. Изменение свободной энергии при переносе электронов по ЦПЭ. E-FMN - комплекс I; E-FAD - комплекс II; b-с1 - комплекс III; aa3 - комплекс IV.

Сопряжение дыхания и синтеза АТФ в митохондриях. I - NADH-дегидрогеназа; II - сукцинат дегидрогеназа; III - QН2-дегидрогеназа; IV - цитохромоксидаза; V - АТФ-синтаза. Энергия протонного потенциала (электрохимического потенциала ΔμН+ используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы.

Влияние ядов на тканевое дыхание и окислительное фосфорилирование (доделаю и пришлю)

Соседние файлы в папке ЭКЗ