Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бомба!.doc
Скачиваний:
6
Добавлен:
25.11.2019
Размер:
307.2 Кб
Скачать

30. Теорема о достижении непрерывной функцией максимума и минимума на отрезке:

Пусть функция f(x) задана на отрезке [a,b]. Существуют точки α и β принадлежащие отрезку [a,b] для которых имеет место: min f(x)=f(α) max f(x)=f(β) при х принадлежащем [a,b].

Доказательство: по теореме об ограниченности непрерывной функции непрерывная на [a,b] функция ограничена. Пусть M= sup (f). По определению точной верхней грани для любого натурального n на отрезке [a,b] найдется точка x n

Такая что: М-(1/n) < f (x n) ≤ M, n=1,2…так как все числа x n из отрезка [a,b] то последовательность { x n } ограничена и из нее можно выделить сходящуюся подпоследовательность { x n } k=1 предел которой lim f (x nk ) = f (β) = M

Таким образом верхняя грань домтигается в точке β. Однако β может быть не единственным значением аргумента где функция достигает максимума. Доказательство о минимуме аналогично.

Пример: Пусть g (x) = { 0 при (x=0), cos (π/x) при (х≠0) и f (x)= max{1- |x|, g(x)}. Определить точки на отрезке [-1,1] в которых функция f(x) принимает максимальные значения.

Решение: Так как на отрезке [-1,1] функции 1- | х | и g(x)не превосходят 1 и обе являются четными то максимальное значение +1 можно искать лишь при положительных аргументах х. В точке х=0 g (0)=0 поэтому f (0)=1. Во всех точках полусегмента (0,1] функция 1-| х | = 1-х < 1. поэтому максимальное значение будет составлять функция g (x), а это достигается в точках x k =(1/2k) , k=1,2…

31.Теорема о непрерывной обратной функции

Пусть у=f(x) есть непрерывная строго возрастающая функция на отрезке [a, b] и A=f(a), B=f(b). Тогда образ [a, b] есть отрезок [A,B] и обратная к f функция x=(y) однозначна, строго возрастает и непрерывна на [A,B] .

Доказательство

Пусть Е1=f([a,b]). По условию A Е1 и B Е1 . по теореме о промежуточных неприрывной функции любая точка отрезка [A,B] принадлежит Е1. В следствии строгой монотонности f(x) точка у не может быть оброзом какой-либо точки x[a,b], если точка у не принадлежит [A,B]. Этим доказано, что образ отрезка [a,b] при помощи f есть отрезок [A,B] . строгая монотонность функции x=(y) и ее однозначность следует из строгой монотонности f(x) на [a,b].

Докажем непрерывность функции x=(y) в любой точке y0( A,B). Пусть >0 – произвольно малое число, причем [x0-, x0+][a,b], где x0=(y0) и пусть y1=f(x0-), y2=( x0+) . Из строгой монотонности f следует, что для любого числа y(y1,y2) соответствующее значение x=(y)  (x0-, x0+) . Таким образом для любого малого >0 можно добавить окрестность (y1,y2) точки y0 такую, что |x-x0|=|(y)- (y0)|<  при y(y1,y2) . А это свойство показывает, что (y) непрерывна в любой точке y0.

Для концевой точки y0=B соответствующая точка x0=b=(y0)= (B). Полагаем x1b->a, y1=f(x1) и тогда |(y0)- (y)|<  для всех y(y1,y0). Аналогично рассматривается случай y0=A.

Замечание. В формулировке теоремы можно слово «возвращающая» заменить на слово «убывающая» и тогда надо заменить [A,B] на [B,A].

Пример1: функция у=+ = при х[0,2] имеет обратную функцию x=(y)=1± , которая при у[0,1] является двухзначной. Если функцию у=+ определять на отрезке [0,1] , то она является строго монотонной, непрерывной, поэтому обратная функция x=(y)=1-- определенная на отрезке [0,1] , является непрерывной, однозначной и строго возрастающей.

Пример2: функция y=f(x)=sinx на отрезке [-π,π] имеет обратную x=(y)=arcsin y, которая при у=0 является трехзначной (х1=-π, х2=0, х3=π) при у=-1 и при у=1 функция x=(y) является однозначной , а на интервалах (-1,0) и (0,1) она является двухзначной. Функция у=sin x на отрезке [-π/2, π/2] является строго монотонной и непрерывной, поэтому обратная функция x=arcsin y на образе [-1,1]=sin[-π/2, π/2] является тоже непрерывной и строго возрастающей.

Замечание. Ранее мы установили непрерывность функции sin x и cos x в точке х=0, откуда следует непрерывность этих функций в любой точке отличной от нуля. Например (пусть х=х0+h, x0≠0) функция sin x = sin (х0+h)=sin x0 cos h + cos x0 sin h стремится к sin x0 при h>0, так как cos h >1, sin h>0 при h>0