Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Modeling of processes in technosphere.doc
Скачиваний:
47
Добавлен:
20.11.2019
Размер:
11.37 Mб
Скачать

18.4 Технологии отыскания эффективных решений

Суждения об относительной важности частных критериев ЛПР может выразить как в качественной, так и в количественной шкале. Если частные критерии измеряются в различных, а тем более разных по классам шкалах (количественных и качественных), их оценки не могут быть пересчитаны в некоторую объективную шкалу оценивания (например, в универсальный денежный эквивалент), то трудно представить, как соизмерить их относительную важность. А сделать это иногда требуется как можно быстрее и как можно адекватнее, чтобы можно было сразу представить себе ценность какой-то конкретной альтернативы. В подобных ситуациях, когда информацию об относительной важности требуется получить и использовать как можно быстрее и при этом обеспечить высокую адекватность и надежность суждений, более предпочтительным представляется учет относительной важности частных критериев в качественной шкале (так называемая «качественная информация об относительной важности»). К качественной информации об относительной важности частных критериев будем относить следующие вербальные суждения:

«критерий с номером i важнее критерия с номером j»;

«критерии с номерами s и t равноценны по важности».

Напрямую использовать информацию о превосходстве или равноценности для дальнейшего сокращения размера множества эффективных альтернатив и поиска наилучшего решения среди них можно только для некоторых частных случаев. Во-первых, это случай, когда шкалы всех частных критериев, относительно которых получена информация.

Второй частной ситуацией, когда возможно прямое использование качественной информации о равноценности или превосходстве в важности одних частных критериев над другими, является такая, в рамках которой фигурируют сообщения о равноценности всех критериев между собой, об абсолютно строгом (лексикографическом) упорядочении критериев по важности, а также о симметрически-лексикографическом упорядочении частных критериев по важности.

Самая сложная в получении, но и самая действенная – это информация об относительной важности критериев в количественной форме. Это информация о величинах замещений значений критериев между собой, о значениях коэффициентов важности частных критериев, количественная информация о допустимой степени взаимной компенсации значений тех или иных критериев, а также о виде функции агрегирования частных критериев в обобщенные критерии. В некоторых случаях такая информация поступает от ЛПР сразу. Но это – скорее исключение из правил. Значительно чаще количественную информацию приходится получать по частям.

18.5 Методы принятия решения при нескольких критериях

При необходимости ПР при многих критериях на практике обычно используют следующие подходы.

1. Свертка векторного критерия

Этот метод также называют скаляризацией векторного критерия или введением суперкритерия. Суть его заключается в следующем.

Выбираются коэффициенты βk ≥ 0 так, что функция

обобщила в себе" все требования частных критериев. При этом обычно

и каждый βk характеризует степень важности критерия fk(X).

На практике обычно ЛПР выбирает какие-то β1, …, βr, затем отыскивает наилучшую точку Х' – например, минимум S(X') при . Если при этом оказывается, что некоторые из значений ЛПР не удовлетворяют, тогда он корректирует значения β1, …, βr и решает задачу заново и т.д.

Рассмотренный подход также называют аддитивной сверткой. Он имеет существенный недостаток – трудно находить коэффициенты βk из-за разных размерностей критериев.

Этого недостатка лишена свертка вида:

или ,

где – идеальное (реально недостижимое) значение k-го критерия, которое указывается ЛПР; – наименее предпочтительное для ЛПР значение k -го критерия; μk , ρk – весовые коэффициенты с тем же смыслом, что и βk. В двух последних свертках каждый k-й критерий выступает своим нормализованным значением , которое изменяется в пределах от 0 до 1. Данный подход снимает проблемы, обусловленные неодинаковыми размерностями входящих в свертку критериев.

Однако существуют и другие вопросы. В частности, можно показать, что выбор вида свертки влияет на конечный результат.

Для иллюстрации данного утверждения рассмотрим случай двух критериев Ф1 и Ф2 и предположим, что они оба получили одинаковые "веса": μ1 = μ2 =0,5 и ρ1 = ρ2 =0,5 . Пусть допустимая область в пространстве критериев имеет вид, представленный на рис. 11 а.

а) б)

Рис. 11 . Иллюстрация влияния вида свертки на конечный результат: а – допустимая область; б – линии равного уровня для критерия S1 (прямые) и S2 (окружности)

Для интегрального критерия типа S1 линии равного уровня представляют собой прямые, задаваемые уравнениями:

На рис. 11 б они показаны в виде линий АВ и A'B'. Для интегрального критерия типа S2 линии равного уровня – окружности с центром в точке , которые описываются уравнением вида:

Из рис. 11 б видно, что первый тип рассматриваемой свертки предполагает выбор в качестве результата точки А или В; второй – точку С. Очевидно, что все три результата существенно отличаются друг от друга.

2. Оптимизация главного из нескольких критериев

При таком подходе один из критериев, наиболее важный с точки зрения ЛПР, оставляют в качестве единственного критерия, а все остальные заменяют ограничениями.

Пусть для определенности главным критерием считается f1(X). Тогда следует выбрать ограничения и рассмотреть задачу об отыскании минимума f1(X) при дополнительных ограничениях

При таком подходе возникает проблема выбора критериальных ограничений , что может потребовать выполнения специальных предварительных расчетов.

3. Последовательная оптимизация всех критериев

Сначала определяется минимальное значение f1(X) при . Обозначим его через . Выбираем "уступку" по этому критерию h1 и назначаем критериальное ограничение . Затем находится минимальное значение f2(Х) при и дополнительном ограничении . Получив значение и выбрав "уступку" h2, назначаем второе критериальное ограничение . После этого определяется минимальное значение f3(Х) при , и и т.д.

На последнем шаге требуется найти минимальное значение fr(X) при , . Если реализуется в точке Х*, то эта точка считается наилучшей.

Очевидно, что точка Х* зависит и от порядка нумерации критериев, и от выбора h1, …, hr-1. Кроме того, всегда остается сомнение в том, что выбрав какую-либо из уступок несколько большей, мы смогли бы существенно улучшить значения других критериев.

Все три метода нуждаются в дополнительной информации: в первом – это коэффициенты β1, …, βr; во втором – номер главного критерия и значения ограничений ; в третьем – порядок выбора критериев и величины уступок h1, …, hr-1.

Литература:

1. Попов Г.В. Выбор решений и безопасность: Учеб. пособие / Иван. гос. энерг. ун-т. – Иваново. 2003. – 92 с.

2. Карпенко А.П. Методы оптимизации (базовый курс). Электронное издание. 2007 URL: http://bigor.bmstu.ru/?cnt/?doc=BaseCourse

3. Романов В.Н. Системный анализ для инженеров / В.Н. Романов. – СПб: СЗГЗТУ, 2006. – 186 с.

Заключение

Источники опасностей, воздействующие на человека, природную среду и материальные ценности имеют естественное или антропогенное происхождение. Мир опасностей в начале XXI века достиг своего наивысшего развития. Ухудшение здоровья и гибель людей требуют от государства и общества приоритетного отношения к проблемам безопасности своего населения. Для этого должен быть задействован весь научно-технический потенциал, использованы имеющиеся у государства стратегические резервы. Иначе к 2050 г. в России численность населения может сократиться почти вдвое; ей грозит утрата значительных территорий и природных богатств.

Эффективность принимаемых решений на всех уровнях руководства страны, а также каждым человеком в обыденной жизни имеет первостепенное значение. Суммируясь, негативные решения стремительно приближают страну к полному краху, в то время как решения, взвешенные и исключительно ответственные способны вывести Россию из того бедственного состояния, в котором она оказалась.

Если после ознакомления с материалом учебного пособия читатель проникнется ощущением ответственности выбора при принятии решений для себя самого, своего окружения, организации, где он учится или работает, своей страны, то автор будет считать свою задачу выполненной.

Библиографический список

  1. Попов Г.В. Выбор решений и безопасность: Учеб. пособие / Иван. гос. энерг. ун-т. – Иваново. 2003. – 92 с.

  2. Ильина Н.В., Лапшин Д.Д., Федянин В.И. Системный анализ и моделирование процессов в техносфере: Учеб. пособие. Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. 206 с.

  3. Ильина Н.В., Лапшин Д.Д., Федянин В.И. Системный анализ и моделирование процессов в техносфере: Учеб. пособие. Ч. 2. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. 128 с.

  4. Романов В.Н. Системный анализ для инженеров / В.Н. Романов. – СПб: СЗГЗТУ, 2006. – 186 с.

  5. Даниловцева Е.Р. Теория игр. Основные понятия: Текст лекций / Е.Р. Даниловцева, В.Г. Фарафонов, Г.Н. Дьякова. – СПб: СПбГУАП, 2003. – 36 с. (электронный курс)

  6. Белов В.В., Воробьев Е.М., Шаталов В.Е. Теория графов. ‒ М.: Высшая школа, 1976. ‒ 392 с.

  7. Балдин К.В. Теоретические основы принятия управленческих решений: Учеб. / К.В. Балдин, С.Н. Воробьев, В.Б. Уткин. – М.: Издательство Московского психолого-социального института; Воронеж: Издательство НПО «МОДЭК», 2005. – 504 с.

  8. Александров Е.А. Основы теории эвристических решений. М.: Советское радио, 1975. – 254с.

  9. Белкин А.Р., Левин М.Ш. Принятие решений: комбинаторные модели аппроксимации информации. М.:, 1990. – 160с.

  10. Белов П.Г. Теоретические основы системной инженерной безопасности. – М.: МИБ СТС, 1996.– 424с.

  11. Воропай Н.И. Теория систем для электроэнергетиков. – Новосибирск: Наука, 2000. – 272с.

  12. Киселев В.Ю. Экономико-математические методы и модели. Иваново: ИГЭУ, 1998. – 384с.

  13. Ларичев О.И., Мошкович Е.М. Качественные методы принятия решений. М.: Наука, 1996. – 208с.

  14. Мушик Э., Мюллер П. Методы принятия технических решений. – М.: Мир, 1990. – 206с.

  15. Руа Б. Классификация и выбор при наличии нескольких критериев (метод Электра). – В кн.: Вопросы анализа и процедуры принятия решений. М.: Мир, 1976, С. 80-107.

  16. Химмельблау Д. Прикладное нелинейное программирование. – М.: Мир, 1975. – 534с.

  17. Эддоус М., Стэнсфилд Р. Методы принятия решений. М.: ЮНИТИ, 1997. – 590с.

  18. Экология и безопасность жизнедеятельности / Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др. М.: ЮНИТИ-ДАНА, 2000.– 447с.

  19. Кох П., Мюллер И. Библиотека программ систематической эвристики для ученых и инженеров. / Пер. с нем.-Йошкар -Ола: Марийское кн. изд-во, 1974.

  20. Ушаков К. Матрица экранирования, или метод группового выбора лучшей идеи / К. Ушаков, М. Драмбян // Журнал «Директор школы», 2002. – №2. – С. 1-3.

  21. Орлов А.И. Современная прикладная статистика. ‒ Журнал «Заводская лаборатория». 1998. Т.64. No.3. С. 52-60.

352

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]