Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kvanty_kolok.docx
Скачиваний:
4
Добавлен:
21.09.2019
Размер:
906.02 Кб
Скачать

[§15.] Операторы координаты , импульса , момента импульса , энергии .

Будем использовать координатное представление ( - представление). Будем рассматривать систему из одной материальной точки. Действие сводится к умножению на вектор , т. е. (это определение действия оператора ).

Здесь строго соблюдается последовательность операторов при раскрытии векторного произведения, например, первая компонента:

,

однако для частного случая декартовых координат порядок операторов не существенен.

Оператор энергии или гамильтониан :

,

здесь - оператор кинетической энергии, - оператор потенциальной энергии. Для одной материальной точки гамильтониан имеет вид:

Переменная t – признак внешнего нестационарного поля.

Тут присутствует и , но и одновременно неизмеримы, тогда потенциальная и кинетическая энергия в квантовой механике не могут быть одновременно измеримыми. В квантовой механике существует понятие “энергия частицы”, но порознь вводить энергию нельзя, иначе либо , либо оказываются неизвестными.

[§ 19.] Волновое уравнение

Надо сформулировать уравнение функции, которая описывала бы квантово-механическую систему.

Это уравнение было получено Шредингером интуитивным путем. Оно ниоткуда не выводится.

Приведем некоторые соотношения в пользу уравнения Шредингера:

Норма волновой функции:

- вероятность обнаружить динамические переменные в интервале .

Наложим на - условие ее сохранения во времени. - это физическое требование, поскольку , то также функция времени.

На базе ограничения получим некоторые ограничения на .

Обозначим . Мы знаем, что , таким образом . Тогда само скалярное произведение - чисто мнимое число.

Но - число вещественное. Отсюда можно представить

(19.1)

Здесь мнимая единица из соотношения . Т. к. в (*) стоит линейный оператор , то это соотношение удовлетворяет принципу суперпозиции.

Подставим (19.1) в равенство , тогда

- эта величина должна быть чисто вещественной, тогда оператор - эрмитов: .

Свойства оператора :

В пределе перехода к классической механике: , то , где S – действие из классической механики. Причем , тогда рассматривая

, (19.2)

где - функция Гамильтона.

В нашем случае , тогда учитывая предельный переход и (19.2), то: .

Получили волновое уравнение:

- нестационарное уравнение Шредингера (волновое уравнение).

Каждой системе ставится в соответствие Гамильтониан, решаем с гамильтонианом уравнение Шредингера и получаем волновую функцию которая определяет эволюцию системы.

[§ 24.] Оператор Гамильтона различных систем

Этот вопрос идентичен вопросу рассмотренному в классической механике - будут те же соотношения, но для операторов

.

Поставим в соответствие конкретной системе операторы и :

В декартовой системе координат , .

Здесь n – число точек в системе.

.

- функция от оператора координаты.

Мы рассматриваем - представление, здесь

Мы рассматриваем декартову систему координат. Гамильтониан мы поставили в соответствие системе материальных точек. Эта система незамкнутая, т. к. потенциальная энергия зависит от времени. (т. е. здесь нет однородности времени).

Перейдем к более простой задаче. Рассмотрим систему N материальных точек во внешнем стационарном поле

Здесь отвечает за внутреннее взаимодействие между частицами.

отвечает за внешнее воздействие на систему частиц.

.

Выражение, описывающее внешнее воздействие обладает аддитивностью, т. е.

.

Индекс a означает, что разные частицы могут взаимодействовать с внешним полем по разному закону. Если все частицы одинаковые и одинаково взаимодействуют с внешним полем, то индекс a убирается.

Внутреннее взаимодействие не аддитивно.

Рассмотрим случай свободной материальной точки. Соответственно она ни с чем не взаимодействует:

Тогда , или в -представлении, то

,

тогда .

Если материальная точка во внешнем поле:

, ,

Нестационарное поле .

Стационарное поле .

Центральное поле .

Рассмотрим систему двух материальных точек. Мы рассматриваем частный случай – замкнутая система двух материальных точек.

В случае классической механики: .

Отсутствие t в энергии взаимодействия – это однородность времени и закон сохранения энергии.

Зависимость энергии от модуля есть изотропность пространства.

В квантовой механике в -представлении:

,

,

где

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]