Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurs_obshchei_khimii.doc
Скачиваний:
369
Добавлен:
31.05.2015
Размер:
5.25 Mб
Скачать

11.6. Магнитные свойства металлов семейства железа

По отношению к внешнему магнитному полю различают диамагнитные и парамагнитные вещества. Диамагнитные ве­щества оказывают прохождению магнитных силовых линий большее сопротивление, чем вакуум, и поэтому внешнее маг­нитное поле их выталкивает. Парамагнитные вещества, напро­тив, проводят магнитные силовые линии лучше, чем вакуум, и поэтому магнитное поле втягивает такие вещества.

Помещенные между полюсами сильного магнита диамагнетики ориентируются перпендикулярно силовым линиям (рис. 84 а), а парамагнетики - вдоль силовых линий (рис. 84, 6).

Рис. 84. Поведение в магнитном поле диа- (а)

и парамагнитных (б)веществ

Столь различное поведение диа- и парамагнитных ве­ществ обусловлено различным характером их внутренних маг­нитных полей. Вращение электронов вокруг оси создает маг­нитное поле, характеризуемое спиновым моментом. Если в

веществе магнитные поля электронов взаимно замкнуты (скомпенсированы) и их суммарный спиновый момент равен 0, то вещество является диамагнитным. Если же магнитные поля электронов не скомпенсированы и вещество имеет собствен­ный магнитный момент, то оно является парамагнитным. Так, атом водорода, имеющий один непарный электрон - парамаг­нитен. Молекула же водородаН2диамагнитна, так как при образовании химической связи происходит взаимная компен­сация спинов электронов.

Первоначальная теория магнетизма объясняла магнитные свойства предположением о существовании элементарных магнитиков, которые обусловлены электрическим «молекуляр­ным током», т.е. круговым движением электричества внутри атомов. Это предположение подтверждается атомной теорией, согласно которой «молекулярный ток» задается движением электронов по орбитам и их вращением спином.

Поля электронов, принадлежащие одному атому, по сво­ему действию могут либо усиливать друг друга, либо уничто­жить, смотря по тому, направлены ли их собственные момен­ты в одну сторону или в противоположные. Если они уничто­жают

действие друг друга взаимно компенсируют, то вещество называется диамагнитным, в другом случае - парамагнитным. Магнитные свойства элементов находятся также в периодиче­ской зависимости от порядкового номера элемента.

Средние значения атомной восприимчивости X(произ­ведение удельной восприимчивости на атомный вес) приведе­ны в табл. 6.

Железо, кобальт и никель - типичные ферромагнитные вещества, вызывающие очень большое усиление внешнего магнитного поля.

Появление ферромагнетизма у металлов группы железа оказывается закономерным следствием сильного роста пара­магнетизма, который наблюдается уже в ряду предшествую­щих элементов, из которых хром и марганец в сплавах могут

проявлять ферромагнитные свойства (сплав Хейслера). Эле­менты, с порядковыми номерами следующие за никелем явля­ются уже диамагнетиками.

Таблица 13

Магнитная восприимчивость элементов VIпериода

Элемент

K

Са

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

XA ∙ 106

20

22

-

59

100

150

535

Ферромаг­нетик

Диамаг-нетики

В случае ферромагнетизма рассматриваемое явление представляется лишь особым случаем парамагнетизма, обу­словлено тем, что в ферромагнитных веществах одинаковое направление элементарных магнитиков вызывается особенно сильным молекулярным полем. Это молекулярное расположе­ние, в обоих случаях при не очень высоких температурах для определенных групп электронов становится наиболее вероят­ным параллельное расположение. Этот случай осуществляется в ферромагнитных металлах и сплавах.

Ферромагнетизм может проявиться только в случае нали­чия незавершенных оболочек с большим побочным квантовым числом и большого среднего расстояния между атомными яд­рами в решетке по сравнению с радиусами этих атомов. Эти условия кроме железа, кобальта и никеля выполняются и у не­которых редкоземельных элементов (диспрозий, гольмий, га­долиний, тербий).

У ферромагнетиков относительная магнитная проницаемость =103 - 105. Магнитная проницаемость=зависит от напряженности магнитного поляН. Она изменяется обычно по кривой имеющей максимум (рис. 85).

Рис. 85. Зависимость от напряженности поляН

Изменение индукции Вот напряженности магнитного поля изображается кривой зависимостиВ = f (H), представ­ленной на рис. 86. УчастокОБ- кривая намагничивания ферро­магнетика.

Рис. 86. Зависимость индукции Вот напряжености

магнитного поля H

На рис. 86 показано изменение индукции Впри обратном изменении поляНпосле того, как индукция достигает некото­рого значенияМБ, аН- значенияОМ. При уменьшенииНин­дукция уменьшается по кривойБР, а неБО. В точкеPприH=Н0начинается перемагничивание материала. ВеличинуНс, представляющую собой напряженность поля, противоположную по знаку первоначальной и необходимую для полного размагничивания материала, называют коэрцитивной силой. ВеличинуВ0приН0называют остаточной индукцией. Измене­ние поля от некоторой точкиАвновь в первоначальном на­правлении изменяет индукциюВпо кривойATБ. ПетляБРАТБносит название петли гистерезиса (отставания). Изме­нение индукции при перемагничивании материала идет термо­динамически необратимо; за один цикл перемагничивания за­трачивается энергия, количество которой пропорционально площади петли гистерезиса. Кроме потерь на гистерезис при действии на материал переменного магнитного поля в нем по­являются вихревые токи, на создание которых, потеря энергии тем больше, чем меньше удельное сопротивление материала.

Явление ферромагнетизма обусловлено тем, что внутри ферромагнетиков ниже температуры, называемой точкой Кю­ри, имеются небольшие кристаллические области, называемые доменами, в них спины неспаренных электронов оказываются ориентированными взаимно параллельно. Это значит, что в пределах домена существует спонтанная намагничиваемость. Обычно направленность магнитных полей доменов самая раз­нообразная. Поэтому, чтобы намагнитить все тело, необходимо воздействовать на него внешним магнитным полем. Действие этого поля сводится к повороту магнитных моментов доменов в направлении внешнего поля и к увеличению тех доменов, магнитные моменты которых составляют наименьший угол с направлением магнитного поля и к уменьшению других доме­нов. Магнитное насыщение будет достигнуто тогда, когда маг­нитные моменты всех доменов окажутся ориентированы в на-

правлении поля. Это связанно с изменением линейных разме­ров тела (с магнитострикцией). Выше точки Кюри ферромаг­нитные свойства тела исчезают. Явление гистерезиса тесно связанно с характером доменного строения ферромагнетиков.

Магнитные материалы с малой коэрцитивной силой Нси с большой магнитной проницаемостью называют магнитомягкими, а с большой коэрцитивной силой и меньшей проницае­мостью - магнитотвердыми. В первых потери на гистерезисе малы, поэтому их используют в качестве сердечников транс­форматоров, электромагнитов и в измерительных приборах, когда необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. К магнитомягким материалам относит­ся железо типа «Армко», но оно обладает низким сопротивле­нием, что повышает потери на вихревые токи. Этот недостаток частично устраняется введением в железо кремния(4 %). У такого электротехнического железаRсоставляет до0,6 мкОм ∙ м,= 450,= 8000,Нс=48 А / м, точка Кюри690 °С. Оно широко применяется в электромашиностроении и в трансформаторах.

Ферриты - сложные оксидные материалы, обладающие свойствами, близкими к ферромагнетикам. Имеют доменную структуру и очень большое удельное сопротивление, благодаря чему потеря энергии в них при высокой частоте не велика. Так как они имеют достаточно хорошие магнитные свойства, то они получили широкое применение в радиоэлектронике. Фер­риты - это двойные или тройные оксиды железа и двухзарядных металлов. Простейший природный феррит - магнитный железнякFe3O4. Ферромагнитные ферритыМnО ∙ Fе2О3,NiО ∙ Fе2О3, CuО ∙ Fе2О3

Магнитные свойства ферритов зависят от расположения MeиFe3+- ионов междуО2-- ионами. Если у феррита струк­тура благородной шпинелиMgO ∙ Аl2О3, то у него нет ферро­магнитных свойств. Если при образовании феррита получается структура, обращенной шпинели, что зависит от соотношения размеров и рода ионов, тоМе2+- ионы и половинаFe3+- ионов находятся в октаэдрических пустотах, а другая половинаFe3+- ионов - в тетраэдрических пустотах. В таких случаях феррит имеет ферромагнитные свойства. Общая формула одного из распространенных никель-цинковых ферритов имеет видх (NiO ∙ Fe2O3) ∙ y (ZnO ∙ Fe2O3). К ферритовым магнитным ма­териалам относятся ферриты со структурой граната в основ­ном феррит-гранат иттрия. Феррит - шпинели используют в ви­де поликристаллической керамики, которая изготавливается из оксидов по керамической технологии, в форме монолитных сердечников; феррит - гранаты выращивают из расплава в виде монокристаллов.

Ферриты - полупроводники, ширина запрещенной зоны 0,1 - 0,6 Эв, удельное сопротивление10° - 105 Ом∙цсм. Про­центный состав и технология изготовления ферритов играет существенную роль в получении магнитных свойств материа­ла.

Изготовление ферритов сводится к следующему. Тонко измельчают и перемешивают обожженные оксиды соответст-

вующих металлов или карбонаты, или другие соли. К смеси добавляют пластификатор (обычно раствор поливинилового спирта). Полученную массу прессуют в нужных формах и об­жигают при 1100 - 1400 °С. Масса спекается и образуются твердые растворы ферритов. Обжигают в окислительной среде или в атмосфере аргона.

Ферриты тверды и хрупки. Их можно только шлифовать и полировать, обработка резанием не удается. Коэрцетивная си­ла Нсу них изменяется от12до320 А / м,точка Кюри - до400 - 500 °С, индукция насыщение0,2 - 0,4 Тл. У марганцево-цинковых ферритов гистерезисные петли узкие (Нснеболь­шая); никель-цинковые ферриты в зависимости от состава и способа получения имеют различную начальную магнитную проницаемость более широкую гистерезисную петлю. Магний - марганцевые ферриты имеют почти квадратную гистерезис-

ную петлю, что важно для изготовления запоминающих устройств в счетно-решающих машинах. Ферриты используют для изго­товления контурных катушек, сердечников импульсных трансформаторов, трансформаторов развертки телевизионных приемников, магнитных экранов, резонаторов, накопителей в вычислительных машинах и для других целей.

В качестве магнитострикционньгх материалов используют никель и сплавы на его основе, а также железо - кобальтовые и железо - алюминиевые сплавы. Их используют в поликристаллической форме и изготавливают по обычной технологии, прокатывая в виде полос толщиной 0,1 - 0,3 ммдля уменьшения потерь на вихревые токи.

Электромеханические преобразователи из магнитных ма­териалов, в частности электроакустические преобразователи, находят широкое применение в ультразвуковой технике, гид­роакустике и акустоэлектронике для изучения и приема аку­стических волн. Свойства материала непосредственно связан­ные с преобразованием энергии характеризуются коэффициен­том магнитомеханической связи «К», магнитострикционной

постоянной «а»и постоянной чувствительности«л».

Для материалов на основе никеля коэффициент магнито­механической связи изменяется в пределах 0,2 - 0,5,«а»- в пределах0,8 - 2,5 ∙ 107 H / м2 ∙ Т,«л»-0,2 - 0,5 ∙ 10-9 Т м2 / H.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]