Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика от Заплавной Т.А..doc
Скачиваний:
14
Добавлен:
27.11.2019
Размер:
1.17 Mб
Скачать

В.2. Определение производной функции

Пусть функция y = ƒ(x) определена на множестве Х. Возьмём т.х Х. Дадим значению х приращение . Тогда y подучит приращение .

Определение. Производной функции y = ƒ(x) называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует):

.

Другие обозначения:

Дифференцирование функции – это нахождение производной этой функции. Если функция имеет в точке x производную (конечную), то она называется дифференцируемой в этой точке. То же можно сказать о дифференцировании функции на промежутке X.

Геометрический смысл производной: производная – угловой коэффициент или тангенс угла наклона касательной, проведенной к кривой y= f(x) в точке x0 , с осью Ох.

Уравнение касательной к кривой y= f(x) в точке x0: .

Механический смысл: производная пути по времени - есть скорость точки в момент t0 , т.е. .

Теорема (зависимость между непрерывностью и дифференцируемостью): Если функция y= f(x) дифференцируема в точке x0, то она в этой точке непрерывна.

Обратная теорема, вообще говоря, не верна, т.е. непрерывная функция может быть не дифференцируемой в точке x0 , например, функция y =|x| в точке x=0.

Поэтому непрерывность функции является необходимым, но не достаточным условием дифференцируемости функции. В математике известны непрерывные функции, не дифференцируемые ни в одной точке.

Замечание. Производная непрерывной функции не обязательно непрерывна. Если функция имеет непрерывную производную на промежутке X , то функция называется гладкой на этом промежутке. Если производная допускает конечное число точек разрыва 1-го рода, то она называется кусочно-гладкой на данном промежутке.

В.3. Основные правила дифференцирования

  1. с’ = 0;

  2. x’ = 1;

  3. (u + v)’ = u’ + v;

  4. (cu)’ = cu;

  5. (uv)’ = uv + uv;

  6. (uvw)’ = u’∙vw + uv’∙w + uvw;

  7. .

В.4. Производная сложной и обратной функций

Если у есть функция от и: у = f(u), где и в свою очередь есть функция от аргумента х: u = φ(x), т.е. если у зависит от х через промежуточный аргумент и, то у называется сложной функцией от х (функцией от функции): y = f(φ(x)).

Теорема. Производная сложной функции , где , где y и u – дифференцируемые функции своих аргументов, равна произведению ее производной по промежуточному аргументу на производную этого аргумента по независимой переменной:

или yx = yu ux

.

Пусть –дифференцируемая и строго монотонная функция на промежутке X, – обратная к ней и непрерывная на соответствующем промежутке Y.

Теорема. Для дифференцируемой функции с производной, не равной нулю, производная обратной функции равна обратной величине производной данной функции, т.е.

В. 5. Производные основных элементарных функций

С учётом полученного правила дифференцирования сложной функции таблицу производных можно записать в следующем виде:

Таблица производных

Функция у

Производная у’

1

С

0

2

x

1

3

un

nun-1 u

4

5

6

eu

eu∙u’

7

au

au∙ln au’

8

ln u

9

loga u

10

sin u

cos u∙u’

11

cos u

– sin u∙u’

12

tg u

13

ctg u

14

arcsin u

15

arcos u

16

arctg u

17

arcctg u

Пример 1. Найти производную функции:

а) у = х + 2; б) y = (2x – 3)(3x + 2); в) у = ; г) у = ; д) у =(x3 – 2x2 + 5)6; е) ; ж) ; з) y = tg(3x2 – 1); и) .

Решение. а) у = х + 2

Используя правило дифференцирования (3) и формулы (1), (2), имеем:

у' = (x + 2) = (x) + (2) = 1 + 0 = 1.

б). y = (2x – 3)(3x + 2)

y= ((2x – 3)(3x + 2)) = (2x – 3)∙(3x + 2) + (2x – 3)∙(3x + 2) = 2∙(3x + 2) + (2x – 3)∙3 = 12x – 5. Здесь мы использовали правило дифференцирования (5).

в) у =

Используя правило дифференцирования (7), имеем

у’ = = .

г) у =

Найдем производную, используя правило дифференцирования (4) и формулу (3).

у' = .

д) у =(x3 – 2x2 + 5)6

Пусть x3 – 2x2 + 5 = и, тогда у = и6. По формуле (3), получим у’ = (и6) = 6u5u= 6(x3 – 2x2 + 5)5∙(x3 – 2x2 + 5) = 6(x3 – 2x2 + 5)5∙(3x2 – 4x).

е)

По правилу дифференцирования (7) и формуле (10) получим:

= .

ж)

Используя формулы (4) и (10), имеем:

.

з) y = tg(3x2 – 1).

По формуле (12) имеем:

y' = (tg(3x2 – 1)) = .

и) .

По формуле (8), а также (3), (4), (5) имеем:

=

= .