Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабник по ф и к химии.doc
Скачиваний:
50
Добавлен:
16.11.2019
Размер:
4.34 Mб
Скачать

Содержание протокола лабораторной работы

Название экстрагента:

Концентрация экстрагента:

Растворитель:

Название соли металла:

Химическая формула соли металла:

Концентрация раствора щелочи (NaOH) СNaOH = _________

Концентрация раствора трилона Б СТ = ___________

Объем аликвоты, взятый для анализа Vа = _______мл.

Таблица экспериментальных данных

№ п/п

VNaOH, мл

рН

V трилона Б, мл

V1

V2

исходный

нет

нет

1

1,0

2

1,5

3

2,0

4

2,5

Обработка результатов эксперимента

1. Рассчитать исходную и равновесные концентрации металла (2+) по уравнению:

,

где VT и СТ – объем, мл и концентрация, моль/л трилона Б, Va – объем аликвоты, мл.

2. Вычислить концентрацию металла (2+) в органической фазе по уравнению:

,

где и Vисх  концентрация, моль/л, и объем, мл, исходной соли металла, взятой для экстракции; Vaq – объем водной фазы, мл, Vaq = Vисх + VNaOH; Vorg – объем органической фазы, мл.

3. Рассчитать коэффициент распределения

.

4. Заполнить таблицу:

№ п/п

VNaOH, мл

рН

VТрБ, мл (средний по двум измерениям)

, моль/л

, моль/л

DMe

lgDMe

5. Построить график зависимости lgDMe = f(pH).

6. По графику определить коэффициенты K (константу равновесия) и z уравнения зависимости логарифма коэффициента распределения от рН: lgD = lgK + zpH

7. Сравнить полученную величину z с зарядом иона и сделать вывод о справедливости принятой модели.

8. Сравнить значения lgK для других металлов и сделать вывод о сравнительной экстрагируемости катионов металлов нафтеновыми кислотами.

Содержание отчета по лабораторной работе

1. Название работы.

2. Цель работы.

3. Ход эксперимента.

4. Экспериментальные данные (см. протокол к лабораторной работе).

5. Обработка экспериментальных данных.

6. Вывод.

Электропроводность растворов электролитов Краткие теоретические сведения

Электропроводность растворов обусловлена подвижностью ионов, образующихся при диссоциации электролитов в полярных растворителях. Электропроводность растворов электролитов зависит от многих факторов: природы электролита, природы растворителя, концентрации раствора, температуры и др.

Электропроводностью называется величина, обратная сопротивлению:

,

где R – сопротивление раствора, Ом; W – электропроводность раствора, Ом−1 или См (сименс).

В кондуктометрии используют удельную и эквивалентную электропроводность

Удельная электропроводность представляет собой величину, обратную удельному сопротивлению:

.

Повышение температуры на 1 К увеличивает удельную электропроводность примерно на 2 – 2,5 %. Это объясняется уменьшением вязкости раствора и уменьшением гидратации ионов, а для растворов слабых электролитов – увеличением степени диссоциации.

Эквивалентная электропроводность:

,

где СN – нормальная концентрация электролита, экв/л. Единицы измерения удельной электропроводности соответственно См·м2·экв−1.

Перенос электричества в растворах электролитов осуществляется ионами и электропроводность раствора зависит от подвижности ионов. Подвижностью иона называют скорость движения данного иона в электрическом поле при разности потенциалов 1 В.

Взаимосвязь подвижности и удельной электропроводности описывает уравнение:

,

где  – степень диссоциации электролита (для разбавленных растворов сильных электролитов  = 1); СN – нормальная концентрация электролита, экв/м3; F – число Фарадея; u+ и u - подвижности катиона и аниона соответственно.

Эквивалентная электропроводность связана с подвижностью иона выражением:

i = Fui , ()

где i – удельная электропроводность катиона либо аниона; ui – подвижность катиона либо аниона.

Эквивалентная электропроводность раствора определяется уравнением:

.

При бесконечно большом разбавлении степень диссоциации  → 1 и эквивалентная электропроводность стремится к наибольшему значению . В этом случае:

предельная эквивалентная электропроводность равна сумме предельных эквивалентных электропроводностей ионов при бесконечном разбавлении (закон Кольрауша). Предельные эквивалентные электропроводности ионов являются справочными величинами.

Отношение эквивалентной электропроводности раствора сильного электролита к ее предельному значению  называют коэффициентом электропроводности или «кажущейся степенью диссоциации».

.

Отношение эквивалентной электропроводности раствора слабого электролита к ее предельному значению ∞ представляет собой степень диссоциации:

.

В случае сильного электролита  = 1. Изменение эквивалентной электропроводности с концентрацией обусловлено коэффициентом электропроводности f, т.е. влиянием электростатического взаимодействия ионов на скорость их движения. Уменьшение эквивалентной электропроводности растворов сильных электролитов с ростом концентрации объясняется торможением движения ионов в электрическом поле – с увеличением концентрации раствора ионы сближаются и электростатическое взаимодействие между ними возрастает.

Для растворов слабых электролитов эквивалентная электропроводность зависит от концентрации электролита из-за изменения степени диссоциации. С увеличением концентрации электролита степень диссоциации уменьшается и это приводит к уменьшению эквивалентной электропроводности.

В разбавленных растворах удельная электропроводность увеличивается почти пропорционально концентрации. В более концентрированных растворах f уменьшается, что приводит к снижению электропроводности (рис. 9).

Величина удельной электропроводности в растворах слабых электролитов пропорциональна произведению αС. При небольших концентрациях это произведение увеличивается с ростом концентрации, и удельная электропроводность растет. Однако при дальнейшем увеличении концентрации это произведение уменьшается из-за снижения степени диссоциации, вследствие чего удельная электропроводность слабых электролитов, как и сильных, после достижения максимального значения снижается (рис. 9).

Для оценки участия данного вида ионов в переносе электричества *.Гитторфом было введено понятие числа переноса иона. Число переноса иона – это отношение количества электричества, перенесенное данным видом ионов qi к общему количеству электричества qобщ, перенесенному всеми видами ионов:

.

Число переноса зависит от природы не только данного иона, но и противоиона. Сумма чисел переноса всех видов ионов в растворе равна единице.

При протекании электрического тока через раствор в приэлектродном пространстве происходит изменение концентрации электролита вследствие движения ионов в электрическом поле и участия ионов в электродных процессах. Допустим, что через раствор электролита MeAn, в котором Mez+ – катион металла, Anz – кислотный остаток бескислородной кислоты, проходит некоторое количество электричества q. На катоде происходит восстановление катионов металлов: . Изменение концентрации Меz+ в катодном пространстве . На аноде протекает процесс окисления анионов: . Изменение содержания электролита в анодном пространстве: .

Число переноса иона любого знака равно отношению убыли электролита у электрода противоположного иону знака к количеству разложенного электролита:

; .