Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по физике.docx
Скачиваний:
16
Добавлен:
06.08.2019
Размер:
770.95 Кб
Скачать

13. Закон Джоуля-Ленца в дифференциальной и интегральной форме.

Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна

По определению I= q/t. откуда q= I t.

Следовательно

Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил

-----Закон Джоуля – Ленца в интегральной форме. (17.13)

Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме.

Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение , получим

Но - плотность тока, а , тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

(17.14)

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

14. Магнитное поле, создаваемое постоянными электрическими токами. Взаимодействие параллельных бесконечных проводников с током, единица Ампер в си.

Опыт показывает, что электрические токи взаимодействуют между собой. Например, два тонких прямолинейных параллельных проводника, по которым текут токи (прямые токи), притягивают друг друга, если токи в них имеют одинаковое направление, и отталкивают, если токи противоположны.

Сила взаимодействия, приходящаяся на единицу длины каждого из параллельных проводников, пропорциональна величинам токов в них и и обратно пропорциональна расстоянию b между ними:

К оэффициент пропорциональности 2k. Закон взаимодействия токов был установлен в 1820 г. Ампером. На основании этого соотношения устанавливается единица силы тока в СИ и в абсолютной электромагнитной системе единиц (СГСМ- системе).

Единица силы тока в СИ — ампер — определяется как сила неизменяюще-гося тока, который, проходя по двум параллельным прямолинейным про-водникам бесконечной длины и ни-чтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, рав-ную H на каждый метр длины. Единицу заряда, называемую кулоном, определяют как заряд, проходящий за 1 с через поперечное сечение проводника, по которому течет постоянный ток силой 1 А. В соответствии с этим кулон называют также ампер-секундой (А с). В системе единиц СИ это соотношение записывается следующим образом:

где — так магнитная постоянная.

Чтобы найти числовое значение воспользуемся

тем, что согласно определению ампера при и b=1м сила F равна Н/м. Подставим эти значения в формулу получим Гн/м (Генри/метр)

- связь между электрической и магнитной постоянными, с – скорость света в вакууме = м/с Магнитное поле

Взаимодействие токов осуществляется через поле, называемое магнитным. Это название происходит от того, что, как обнаружил в 1820 г. Эрстед, поле, возбуждаемое током, оказывает ориентирующее действие на магнитную стрелку. В опыте Эрстеда проволока, по которой тек ток, была натянута над магнитной стрелкой, вращающейся на игле. При включении тока стрелка устанавливалась перпендикулярно к проволоке. Изменение направления тока заставляло стрелку повернуться в противоположную сторону. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной.. Эту величину принято обозначать буквой В. Логично было бы по аналогии с напряженностью электри-ческого поля Е назвать В напряженно-стью магнитного поля. Однако по историческим причинам основную силовую характеристику магнитного поля назвали магнитной индукцией. Название же «напряженность магнитного поля» оказалось присвоенным вспомогательной величине Н, аналогичной вспомогательной характеристике D электрического поля. Магнитное поле, в отличие от электрического, не ока-зывает действия на покоящийся заряд Сила возникает лишь тогда, когда за-ряд движется. Проводник с током представляет собой электрически нейтральную систему зарядов, в которой заряды одного знака движутся в одну сторону, а заряды другого знака движутся в противоположную сторону (либо покоятся). Отсюда следует, что магнитное поле порождается движущимися зарядами. Итак, движущиеся заряды (токи) изменяют свойства окружающего их пространства — создают в нем магнитное поле. Это поле проявляется в том, что на движущиеся в нем заряды (токи) действуют силы.

Опыт дает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: поле В, порождаемое несколькими движущимися зарядами (токами), равно векторной сумме полей порождаемых каждым зарядом (током) в отдельности: .

Пространство изотропно, поэтому, если заряд неподвижен, все направления оказываются равноправными. Этим обусловлен тот факт, что создаваемое точечным зарядом электростатическое поле является сферически-симметричным. В случае движения заряда со скоростью v в пространстве появляется выделенное направление (направление вектора v). Поэтому можно ожидать, что магнитное поле, создаваемое движущимся зарядом, обладает осевой симметрией.

Рассмотрим магнитное поле, создаваемое в некоторой точке Р точечным зарядом q, движущимся с постоянной скоростью v. Возмущения поля передаются от точки к точке с конечной скоростью с. Поэтому индукция В в точке Р в момент времени t определяется не положением заряда в тот же момент t, а положением заряда в некоторый более ранний момент времени : .

Здесь Р означает совокупность координат точки Р, определяемых в некоторой неподвижной системе отсчета, r(t—т) — радиус-вектор, проведенный в точку Р из той точки, в которой находился заряд в момент времени . Если скорость движения заряда v много меньше с (v<<c), время запаздывания будет пренебрежимо мало. В этом случае можно считать, что значение В в момент t определяется положением заряда в тот же момент времени t. При этом условии

Вид функции B может быть установлен только экспериментально.

.

Опыт дает, ято в случае, когда v<<c, магнитная индукция поля движущегося заряда определяется формулой , где k' — коэффициент пропорциональности, который зависит от выбора системы единиц. В системе СИ и след. Формула индукции магнитного поля

Эта формула может быть получена только экспериментально. Из соотношения вытекает, что вектор В в каждой точке Р направлен перпендикулярно к плоскости, проходящей через направление вектора v и точку Р, причем так, что вращение в направлении В образует с направлением v правовинтовую систему