Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на все вопросы(вроде всё,без нумерации).doc
Скачиваний:
157
Добавлен:
23.04.2019
Размер:
1.98 Mб
Скачать

24.6. Дифференциалы высших порядков

Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х — независимая переменная. Тогда ее первый дифференциал dy=ƒ'(х)dx есть также функция х; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d2y или d2ƒ(х).

Итак, по определению d2y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х).

Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным:

d2y=d(dy)=d(f'(x)dx)=(ƒ'(х)dx)'•dx=f"(x)dx•dx=f"(x)(dx)2 т. е.

d2y=ƒ"(х)dх2.                                            (24.5)

Здесь dx2 обозначает (dx)2.

Аналогично определяется и находится дифференциал третьего порядка

d3y=d(d2y)=d(ƒ"(х)dx2)≈f'(x)(dx)3.

И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: dny=d(dn-ly)=f(n)(x)(dx)n.

Отсюда находим, что , В частности, при n=1,2,3

соответственно получаем:

 

т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

 

Отметим, что все приведенные выше формулы справедливы только, если х — независимая переменная. Если же функцию у=ƒ(х), где х — функция от кαкой-mo другой независимой переменной, то дифференциалы второго и выше порядков не обладают свойством инвариантности формы и вычисляются по другим формулам. Покажем это на примере дифференциала второго порядка.

Используя формулу дифференциала произведения (d(uv)=vdu+udv), получаем:

d2y=d(f'(x)dx)=d(ƒ'(х))dx+ƒ'(х)•d(dx)=ƒ"(х)dx•dx+ƒ'(х)•d2x, т. е.

d2y=ƒ"(х)dx2+ƒ'(х)•d2x.                               (24.6)

Сравнивая формулы (24.5) и (24.6), убеждаемся, что в случае сложной функции формула дифференциала второго порядка изменяется: появляется второе слагаемое ƒ'(х)•d2х.

Ясно, что если х — независимая переменная, то

d2x=d(dx)=d(l•dx)=dx•d(l)=dx•0=0

и формула (24.6) переходит в формулу (24.5).

<< Пример 24.6

Найти d2y, если у=е и х — независимая переменная.

Решение: Так как у'=3е, у"=9e, то по формуле (24.5) имеем d2y=9e3xdx2.

<< Пример 24.7

Найти d2y, если у=х2 и х=t3+1и t— независимая переменная.

Решение: Используем формулу (24.6): так как

у'=2х,    у"=2,    dx=3t2dt,    d2x=6tdt2,

то  d2y=2dx2+2x•6tdt2=2(3t2dt)2+2(t3+1)6tdt2=18t4dt2+12t4dt2+12tdt2=(30t4+12t)dt2

Другое решение: у=х2, х=t3+1. Следовательно, у=(t3+1)2. Тогда по формуле (24.5)

d2у=у¢¢ •dt2,

d2y=(30t4+12t)dt2.

§ 25. Исследование функций при помощи производных

25.1. Некоторые теоремы о дифференцируемых функциях

Рассмотрим ряд теорем, имеющих большое теоретическое и прикладное значение.

Теорема 25.1 (Ролль). Если функция ƒ(х) непрерывна на отрезке [а;b], дифференцируема на интервале (а; b) и на концах отрезка принимает одинаковые значения ƒ(а)=ƒ(b), то найдется хотя бы одна точка сє(а;b), в которой производная ƒ'(х) обращается в нуль, т. е. ƒ'(с)=0.

▼ Так как функция ƒ(х) непрерывна на отрезке [а;b], то она достигает на этом отрезке своего наибольшего и наименьшего значений, соответственно, М и m. Если М=m, то функция ƒ(х) постоянна на [a;b] и, следовательно, ее производная ƒ'(х)=0 в любой точке отрезка [a;b].

Если М¹ m, то функция достигает хотя бы одно из значений М или m во внутренней точке с интервала (a;b), так как ƒ(a)=ƒ(b).

Пусть, например, функция принимает значение М в точке х=сє(a;b), т. е. ƒ(с)=М. Тогда для всех хє(a;b) выполняется соотношение

ƒ(с)≥ƒ(х).                                                   (25.1)

Найдем производнуюƒ'(х) в точке х=с:

В силу условия (25.1) верно неравенство ƒ(с+∆х)—ƒ(с)≤0. Если ∆х>0 (т. е. ∆х→0 справа от точки х=с), то

 и поэтому  ƒ'(с)≤0.

Если ∆х<0, то

 и ƒ'(с)≥0.

Таким образом, ƒ'(с)=0

В случае, когда ƒ(с)=m, доказательство аналогичное ▲

Геометрически теорема Ролля означает, что на графике функции у=ƒ(х) найдется точка, в которой касательная к графику параллельна оси Ох (см. рис. 139 и 140). На рисунке 141 таких точек две.

Теорема 25.2 (Коши). Если функции ƒ(х) и φ(x) непрерывны на отрезке [a;b], дифференцируемы на интервале (α;b), причем φ'(х)¹ 0 для хє(а;b), то найдется

хотя бы одна точка сє(a;b) такая, что выполняется равенство

▼Отметим, что φ(b)—φ(а)≠0, так как в противном случае по теореме Ролля нашлась бы точка с, такая, что φ'(с)=0, чего не может быть по условию теоремы. Рассмотрим вспомогательную функцию

Она удовлетворяет всем условиям теоремы Ролля: непрерывна на отрезке [a;b] и дифференцируема на интервале (α;b), так как является линейной комбинацией функций ƒ(х) и φ(х) на концах отрезка она принимает одинаковые значения F(a)=F(b)=0.

На основании теоремы Ролля найдется точка х=сє(a;b) такая, что F'(c)=0. Но

, следовательно,

Отсюда следует

 

Теорема 25.3 (Лагранж). Если функция ƒ(х) непрерывна на отрезке [а;b], дифференцируема на интервале (α;b), то найдется хотя бы одна точка сє(a;b) такая, что выполняется равенство

 

ƒ(b)-ƒ(a)=ƒ'(с)(b-a).                                      (25.2)

▼ Решение: Теорему Лагранжа можно рассматривать как частный случай теоремы Коши. Действительно, положив φ(х)=х, находим φ(b)-φ(a)=b-a, φ'(х)=1, φ'(с)=1.

Подставляя эти значения в формулу

получаем

или ƒ(b)-ƒ(a)=ƒ'(с)(b-a) ▲.

Полученную формулу называют формулой Лагранжа или формулой о конечном приращении:  приращение дифференцируемой функции на отрезке [a;b] равно приращению аргумента, умноженному на значение производной функции в некоторой внутренней точке этого отрезка

Теорема Лагранжа имеет простой геометрический смысл. Запишем формулу (25.2) в виде

 ,

 где α<с<b. Отношение   есть угловой коэффициент секущей АВ, а величина ƒ'(с) — угловой коэффициент касательной к кривой в точке с абсциссой х=с.

Следовательно, геометрический смысл теоремы Лагранжа таков: на графике функции y=f(x) найдется точка С(с;ƒ(с)) (см. рис. 142), в которой  касательная к графику функции параллельна секущей АВ.

 

 Следствие 25.1. Если производная функции равна нулю на некотором промежутке, то функция постоянна на этом промежутке.

Пусть ƒ'(х)=0 для " xє(α;b). Возьмем произвольные x1 и х2 из (а;b) и пусть x12. Тогда по теореме Лагранжа $сє(х12) такая, что ƒ(х2)-f(x1)=ƒ'(с)(х21). Но по условию ƒ'(х)=0, стало быть, ƒ'(с)=0, где х1<с<х2. Поэтому имеем ƒ(х2)-ƒ(х1)=0, т. е. ƒ(х2)=f(x1). А так как x1 и х2 — произвольные точки из интервала (α;b),то " x є (а;b) имеем ƒ(х)≈с.

 

Следствие 25.2. Если две функции имеют равные производные на некотором промежутке, то они отличаются друг от друга на постоянное слагаемое.

Пусть f1' (x)=f2'(x) при хє(α;b). Тогда (f1(x)-f2(x))'=f1'(x)-f2'(x)=0. Следовательно, согласно следствию 25.1, функция f1(х)-f2(x) есть постоянная, т. е. f1(x)-f2(x)=C для " xє(α;b).

<< Пример 25.1

Доказать, что arcsinx + arccosx =p /2, где х є [-1;1].

Решение: Пусть ƒ(х)=arcsinx+arccosx. Тогда " xє(-1;1) имеем

Отсюда следует, что ƒ(х)=С, т.е. arcsinx+arccosx=С. Положив х=0, находим 0+p /2=С, т. е. С=p /2. Поэтому arcsinx+arccosx=p /2. Это равенство выполняется и при х=±1 (проверьте!).

Аналогично доказывается, что arctgх+arcctgх=p /2.

Формуле Лагранжа можно придать другой вид. Применив теорему Лагранжа к отрезку [х;х+∆х] (∆х>0), будем иметь

ƒ(х+∆х)-ƒ(х)=ƒ'(с)∆х.                                 (25.3)

Каждое число сє(х;х+∆х) можно записать в виде с=х+θ∆х, где 0<θ<1 (действительно, х<с<х+∆х Þ 0<с-х<∆х Þ 0< <1; положим    =θ  Þ с=х+θ∆х). Формула (25.3) примет вид

ƒ(х+∆х)-ƒ(х)=ƒ'(х+θ∆х)∆х,  где 0<θ<1.

Используя теорему Лагранжа, можно оценить точность приближенного равенства ∆у≈dy. Сделаем это, считая, что функция ƒ(х) имеет непрерывную вторую производную ƒ"(х):

∆у-dy=(ƒ(х+∆х)-ƒ(х))-ƒ'(х)∆х=ƒ'(с)∆х-ƒ'(х)∆х=(ƒ'(с)-ƒ'(х))∆х=ƒ"(c1)(c-х)∆х,

где с1є(х;с) (рис. 143).

Итак,    ∆у-dy=f"(c1)(c-х)∆х.    Пусть   

Так как |с-х|<∆х, a ƒ"(c1)≤M, то получаем оценку |∆у-dy|≤М|∆х|2.