Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методическое пособие по БиМ к экзам.doc
Скачиваний:
80
Добавлен:
15.04.2019
Размер:
17.67 Mб
Скачать

1. Биологические молекулы. Последовательность молекулярной организации клеток

Молекулярный уровень является глубинным в орга­низации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нукдеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами.

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превраща­ются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой.

На молекулярном уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Физико-химическая специфика этого уровня, заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом.

Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что все клетки живых организмов сходны по своему составу и что процессы обмена веществ протекают однотипно. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды и углеводы.

Таблица 2 - Химический состав клетки

Органические вещества

( в % на сырую массу)

Неорганические вещества

( в % на сухую массу)

Вода………………....................75-85

Макроэлементы:

Кислород………….……65-75

Белки…………………………..10-20

Углерод………...….…..15-18

Жиры..............................................1-5

Водород…………..…....8-10

Углеводы…………………….....0,2-2

Азот…………………....1,5-3

Нуклеиновые кислоты…..............1-2

Магний……………….0,02-0,03

Низкомолекулярные вещества….0,1

Железо……………… 0,01-0,015

Микроэлементы:

Медь………………….0,0002

Иод…………………...0,0001

Цинк…………………..0,0003

Ультрамикроэлементы:

Не превышают 0,000001

Радий

Золото

Уран

Считается, что основу жизни на нашей планете составляет углерод. Он обнаружен во всех органических молекулах.

Рисунок 1 - Кругообращение углерода в природе

Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область — органическая химия.

Некоторые структурные формулы углеродных соединений представлены на рисунке 2

Рисунок 2 - Соединения углерода на основе его четырех связей

Из групп атомов углерода, водорода, кислорода и азота образуются молекулы (так называемые–предшественники),

а из них формируются сложные химические соединения, различающиеся по строению и функциям

Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, т.е. соединения последних в определенном порядке. Например, аминокислоты, соединяясь в определенном порядке образуют цепочку белка.

Рисунок 4– Общая структура аминокислот

На рисунке 5 представлена вторичная структура белка – это цепочка аминокислотных остатков , состоящая из углерода, кислорода, водорода, азота и радикалов, закрученная в спираль.

Рисунок 5 - Структура белка

Спирт глицерин и жирные кислоты образуют липиды.

Рисунок 6 - Структурная формула липида

Соединение моносахаров в полисахариды представлено на рисунке 7

Глюкоза

Крахмал

Рисунок 7 - Структурная формула глюкозы и крахмала

Мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Молекулы состоят из еще более мелких частиц - атомов. Полимеры ("поли"- "много", "мерос" - "часть") - это молекулы, состоящие из одинаковых или очень похожих друг на друга групп атомов (остатков мономеров: "моно" - "один"), соединенных между собой (см. рис. 13б и 14). Пищеварительные ферменты во вторичной лизосоме "разрезают" полимеры пойманной пищи на отдельные мономеры. Полимеры и их мономеры обычно имеют разные названия. Сведения обо всех типах полимеров клетки объединены в таблице 2

Обычно на одном конце любого клеточного полимера к нему присоединен атом водорода, а на другом конце - группа из двух соединенных друг с другом атомов - водорода и кислорода. Подобные химические реакции (в ходе которых к каким-либо молекулам присоединяются разделенные на части молекулы воды) называют реакциями гидролиза. Пищеварительные ферменты, производящие реакции гидролиза, называют гидролазами.

Таблица 2. Полимеры и мономеры, входящие в состав живых клеток.

Полимеры

Мономеры

Белки

Аминокислоты (обычно их в клетке около 20 разных типов).

Углеводы (полисахариды)

Моносахариды

Нуклеиновые кислоты

Нуклеотиды

Рибонуклеиновая кислота (РНК)

нуклеотиды РНК (4 типа: А аденин, У урацил, Г гуанин, Ц цитозин)

Дезоксирибонуклеиновая кислота (ДНК)

нуклеотиды ДНК (4 типа: А, Т тиамин, Г, Ц)

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности.

Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тиамин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК.

В состав большинства белков входит 100-500 аминокислот, но их последовательности в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмолекулярные структуры, примерами которых являются нуклеопротеиды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков).

В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи не­прерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.