Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методическое пособие по БиМ к экзам.doc
Скачиваний:
80
Добавлен:
15.04.2019
Размер:
17.67 Mб
Скачать
  1. Мембранные органоиды клетки

Рибосомы из ядрышка поступают (через поры в ядерной оболочке) на мембраны эндоплазматической сети (ЭПС) - системы соединенных между собой канальцев и полостей различной формы и величины, контактирующей со всеми органоидами клетки.

ЭПС бывают двух видов - шероховатая и гладкая: на шероховатой ЭПС (или гранулярной) располагается множество рибосом, которые осуществляют синтез белков. Рибосомы придают мембранам шероховатый вид. Мембраны гладкой ЭПС не несут рибосом на своей поверхности, в них располагаются ферменты синтеза и расщепления углеводов и липидов. Гладкая ЭПС выглядит как система тонких трубочек и цистерн.

рибосомы

а) б)

Рисунок 16 – Эндоплазматическая сеть а) шероховатая;

б) вверху шероховатая, ниже гладкая ЭПС

Продукты синтеза (белки, жиры и углеводы), образовавшиеся в каналах и полостях ЭПС, транспортируются к аппарату Гольджи.

Комплекс Гольджи – это органоид клетки, основой которого является гладкая мембрана, образующая пакеты уплощённых цистерн,

уложенных в стопку, и крупных и мелких пузырьков, расположенных на концах полостей.

Рисунок 17 – Аппарат Гольджи

Все поступившие в аппарат Гольджи вещества накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму, к органоидам клетки, где потребляются или выделяются из клетки.

Рисунок 18 – Микрофотография аппарата Гольджи.

Наряду с образованием белков, жиров и углеводов и т.д., ЭПС клетки вырабатывает специфические вещества белковой природы – ферменты, которые, накапливаясь в аппарате Гольджи выделяются в виде лизосом - небольших округлых телец. Лизосомы (греч. “лизео” - растворяю, “сома” - тело) - самые мелкие мембранные образования, представляющие собой пузырьки, диаметром 0,5 мкм, содержат ферменты, расщепляющие белки, углеводы, жиры и нуклеиновые кислоты. Лизосомы участвуют в расщеплении старых “частей” клетки, целых клеток и отдельных органов. Например, исчезновение хвоста у головастика лягушек происходит под действием ферментов лизосом.

Выделяющиеся из аппарата Гольджи пузырьки с водой движутся к вакуолям.

Вакуоли - мембранные органеллы, являющиеся резервуарами воды с растворенными в ней соединениями. В растительных клетках на долю вакуолей приходится до 90% объема, а животные клетки имеют временные вакуоли, занимающие не более 5% их объема.

Вакуоли

Рисунок 19 – Вакуоли в клетке

Вакуоли растительных клеток поддерживают тургорное давление и поставляют воду, используемую при фотосинтезе.

ЭПС, аппарат Гольджи, лизосомы и вакуоли составляют систему, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функций мембран.

Рисунок 20 - Система образования и выделения веществ через ЭПС и аппарат Гольджи.

Цитоплазма большинства растительных и животных клеток содержит “энергетические станции” - митохондрии.

Митохондрии имеют палочковидную, нитевидную или шаровидную форму диаметром около 1 мкм и длиной около 7 мкм. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) хорошо видны в световой микроскоп, имеют наружную гладкую мембрану и внутреннюю мембрану, имеющую многочисленные складки - кристы, в которые встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку, в энергию молекул АТФ. Число крист (лат. “криста” - гребень, вырост) неодинаково в разных митохондриях клеток. Их может быть от нескольких десятков до нескольких сотен и даже тысяч: чем больше энергетических затрат осуществляет данная клетка, тем больше она содержит митохондрий. Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Вещество матрикса более плотное, чем то, которое окружает митохондрию.

В матриксе присутствуют нити ДНК и РНК, а также рибосомы, что обеспечивает митохондриям самовозобновление путем деления. Митохондрии тесно связаны с мембранами эндоплазматической сети, каналы которой часто открываются непосредственно в митохондрии.

Количество митохондрий меняется в процессе индивидуального развития организма (онтогенеза): в молодых растущих и делящихся клетках их значительно больше, чем в стареющих.

Рисунок 21 - Митохондрия

Цитоплазма растительных клеток содержит пластиды, животные клетки их не имеют. Различают три основных типа пластид: лейкопласты, хромопласты и хлоропласты. Они имеют разную окраску. Бесцветные лейкопласты находятся в цитоплазме клеток неокрашенных частей растений: стеблях, корнях, клубнях. Например, их много в клубнях картофеля, в которых накапливаются зерна крахмала. Хромопласты находятся в цитоплазме цветков, плодов, стеблей, листьев. Хромопласты обеспечивают желтую, красную, оранжевую окраску растений. Зеленые хлоропласты содержатся в клетках листьев, стеблей и других частях растения, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, они часто имеют овальную форму. У высших растений в одной клетке содержится несколько десятков хлоропластов.

Рисунок 22 - Пластиды

Зеленые хлоропласты способны переходить в хромопласты - поэтому осенью листья желтеют, а зеленые помидоры краснеют при созревании. Лейкопласты могут переходить в хлоропласты (позеленение клубней картофеля на свету). Таким образом, хлоропласты, хромопласты и лейкопласты способны к взаимному переходу.

Основная функция хлоропластов - фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Каждый хлоропласт окружен двойной мембраной, обладающей избирательной проницаемостью. Снаружи располагается гладкая мембрана, а внутренняя имеет складчатую структуру. Основная структурная единица хлоропласта – тилакоид, плоский двумембранный мешочек, ирающий ведущую роль в процессе фотосинтеза. В мембране тилакоида расположены белки, аналогичные белкам митохондрий, которые участвуют в цепи переноса электоронов. Тилакоиды расположены стопками, напоминающие стопки монет (от 10 до 150) и называемыми гранами. Грана имеет сложное строение: в центре располагается хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл.

В каждом хлоропласте примерно по 50 гран, расположенных в шахматном порядке. В мембранах, формирующих тилакоиды, содержатся ферменты, улавливающие солнечный свет и синтезирующие АТФ. Внутренняя среда хлоропласта содержит ферменты, синтезирующие органические вещества с использованием энергии АТФ. . Каждый хлоропласт содержит ДНК и рибосомы и способен к автономному делению, как и митохондрии. Зеленый цвет хлоропластов обусловлен содержанием в них пигмента хлорофилла, имеющего сложное химическое строение. В живом и функционирующем хлоропласте содержится до 75 % воды.

Рисунок 23 - Хлоропласт

Размеры, форма митохондрий и хлоропластов, наличие в них двуцепочечной ДНК и собственных рибосом делают их похожими на клетки бактерий. На основании этого сходства существует теория симбиотического происхождения эукариотической клетки, в соответствии с которой полагают, что предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.

Помимо различных органоидов клетка имеет включения - непостоянные образования, которые то возникают, то исчезают. Включения являются продуктами метаболизма и локализуются в основном в цитоплазме клетки в виде гранул, зерен, капель и кристаллов. Липоиды откладываются в виде мелких капель, полисахариды - в виде гранул (зерна крахмала, гранулы гликогена); белковые соединения откладываются реже (тоже в виде гранул, есть шарики, палочки, пластинки), они есть в яйцеклетках, печени, в цитоплазме простейших и многих других животных. К клеточным включениям относятся некоторые пигменты (липофуцин, образующийся главным образом при старении организма; липохромы находящиеся в яичниках и надпочечниках; ретинин, входящий в состав зрительного пурпура; гемоглобин крови; меланин кожи и другие пигменты). Еще встречаются секреторные включения, чаще располагающиеся в железистых клетках: они могут быть белковыми, сахарами, липопротеидами и т.д.