Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методические указания.doc
Скачиваний:
37
Добавлен:
14.02.2015
Размер:
578.05 Кб
Скачать

Лабораторная работа №3

Аппаратные средства ЭВМ.

Цель работы:Изучить состав и принцип функционирования современного персонального компьютера. Овладеть навыками первоначальной настройки и методами анализа архитектуры ЭВМ.

Оборудование: персональный компьютер x86

Программное обеспечение: Windows XP, SiSoftware Sandra Lite (версия 2008.1.12.34).

Общие сведения

Компьютер (англ. computer — вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Наиболее "весомой" частью любого компьютера является системный блок. Внутри него расположены блок питания, плата с центральным процессором (ЦП), видеоадаптер, жесткий диск, дисководы гибких дисков и другие устройства ввода/вывода информации. Зачастую видеоадаптер и контроллеры ввода/вывода размещены прямо на плате ЦП.

Существует два основных класса компьютеров:

- цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов;

- аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин.

Практически все компьютеры используют три вида памяти: оперативную, постоянную и внешнюю. А Кэш-память предназначена для согласования скорости работы сравнительно медленных устройств, таких, например как динамическая память с относительно быстрым микропроцессором. Использование кэш-памяти позволяет избегать циклов ожидания в его работе, которые снижают производительность всей системы.

Устройство компьютера

В основе своей компьютер представляет собой совокупность нескольких составляющих:

- системный блок;

- устройство вывода (монитор);

- устройства ввода (клавиатура, манипулятор типа «мышь»).

Теперь рассмотрим компоненты компьютера подробнее.

Основной частью системного блокаявляется связка системной платы (материнской), процессора, оперативной памяти, видеоадаптера, жесткого диска и блока питания.

Рисунок 1 - Внутреннее устройство системного блока

Все эти составляющие имеют непосредственный контакт с системной платой.

Системная плата(рисунок 2) - это главная и самая большая печатная плата в вычислительной машине. Типичная материнская плата построена на базе четырех-шестислойной текстолитовой печатной платы. Использование многослойных плат позволяет при сохранении стандартных размеров развести различные электрические цепи таким образом, чтобы их взаимовлияние было минимальным. По тем слоям, которые находятся в глубине платы, разводятся цепи питания и заземления, а по прочим, включая верхний и нижний - собственно сигнальные цепи.

В системную плату встроены такие компоненты, как гнезда процессоров, разъемы и микросхемы. Современные системные платы содержат следующие компоненты:

  • гнездо для процессора;

  • набор микросхем системной логики (компоненты North/SouthBridge);

  • базовая система ввода-вывода (BIOS);

  • гнезда модулей памяти;

  • разъемы шин PCI/AGP;

  • преобразователь напряжения для центрального процессора;

  • батарея.

Некоторые системные платы также включают интегрированные аудио- и видеоадаптеры, сетевой и SCSI-интерфейсы, а также другие элементы, в зависимости от типа системной платы. Системная плата объединяет в единую систему все компоненты компьютера - без нее они бы оставались просто набором не связанных друг с другом комплектующих.

Рисунок 2 - Общий вид системной платы

Процессорное гнездо(рисунок 3) (socket– гнездо или углубление) используется для установки процессора на системную плату, состоит из большого количества отверстий. Из основных процессорных разъемов можно выделить гнезда типаSocket478 иSocket775 для процессоров маркиIntelиSocket754 иSocket939 для -AMD. Числовому значению после названия сокета соответствует количество ножек процессора. Существует так же и буквенное обозначение сокетов, как пример -SocketAM2 отAMD, рассчитан на 940 ножек.

Рисунок 3 – Внешний вид процессорного гнезда

Чипсет– это набор микросхем, управляющих интерфейсом или соединениями процессора с различными компонентами компьютера. Поэтому он определяет, в конечном счете, тип и быстродействие используемого процессора, рабочую частоту шины, скорость, тип и объем памяти. В сущности, набор микросхем относится к числу наиболее важных компонентов системы, даже, наверное, более важных, чем процессор.

Обычно чипсет состоит из двух микросхем, называемых северным и южным мостами.

Северный мост (рисунок 4) (NorthBridge) - микросхема, ответственная, за связь процессора и оперативной памяти. В некоторых случаях в него может быть встроен графический контроллер. Именно северный мост задает частоту работы всех устройств.NorthBridgeили контроллерPAC(PCI/AGPController), является основным компонентом системной платы и единственной, за исключением процессора, схемой, работающей на полной частоте системной платы (шины процессора). В современных наборах микросхем используется однокристальная микросхемаNorthBridge; в более ранних версиях находилось до трех отдельных микросхем, составляющих полную схемуNorthBridge. Он генерирует последовательность электрических импульсов, частота генерируемых импульсов определяет тактовую частоту системы. Промежуток времени между соседними импульсами определяет время одного такта работы машины или простотакт работы машины.

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Рисунок 4 – Внешний вид северного моста для процессоров Intel

Южный мост(SouthBridge) – это второе составляющие чипсета. Компонент в наборе микросхем системной логики с более низким быстродействием. Обычно он содержит две схемы, реализующие интерфейс контроллера жесткого дискаIDEи интерфейсUSB(UniversalSerialBus— универсальная последовательная шина), а также схемы, реализующие функции памятиCMOSи часов.

Шины- основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два или более системных компонента.

Существует определенная иерархия шин персонального компьютера, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.

- Шина процессора (CPUFSB— шина процессора (илиFront-SideBus)). Эта высокоскоростная шина является ядром набора микросхем и системной платы. Используется в основном процессором для передачи данных между кэш-памятью или основной памятью и компонентомNorthBridgeнабора микросхем. В системах на базе процессоровPentiumIIэта шина работает на частоте 66, 100, 133 или 200 МГц и имеет ширину 64 разряда, в системах на базе процессораIntelPentium4 используется шина процессора с частотой 400 МГц.

Шина процессора включает в себя:

- кодовую шину данных(КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;

- кодовую шину адреса(КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;

- кодовую шину инструкций(КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины.

Шина памятипредназначена для передачи информации между процессором и основной памятью системы. Эта шина соединена с набором микросхем системной платыNorthBridge. В зависимости от типа памяти, используемой набором микросхем (и, следовательно, системной платой), шина памяти может работать с различными скоростями. Наилучший вариант, если рабочая частота шины памяти будет совпадать со скоростью шины процессора. Память, имеющая ту же частоту, что и шина процессора, позволяет отказаться от расположения внешней кэш-памяти на системной плате. Именно поэтому кэш-память второго и третьего уровней была непосредственно интегрирована в процессор.

Шина AGP (AcceleratedGraphicsPort) Эта 32-разрядная шина (т. е. одновременно передается 32 бита) работает на частоте 66 (AGP1х), 133 (AGP2х) или 266 МГц (AGP4х) и предназначена для подключения видеоадаптера. Она подключается к компонентуNorthBridgeнабора микросхем системной логики.

Шина ISA (IndustryStandardArchitecture— архитектура промышленного стандарта). Это 16-разрядная шина, работающая на частоте 8 МГц; впервые стала использоваться в системахATв 1984 году (была 8-разрядной и работала на частоте5 МГц). Имела широкое распространение до настоящего времени. Реализуется с помощью компонента South Bridge. Служила для подключения различных плат расширения. Была вытеснена более быстрой шиной PCI.

Шина PCI (рисунок 5) (Peripheral Component Interconnect). Эта 32-разрядная шина работает на частоте 33 МГц; используется, начиная с систем на базе процессоров 486. В настоящее время есть реализация этой шины счастотой 66 МГц. Находится под управлением контроллера PCI — части компонента North Bridge набора микросхем. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. К шине PCI подключается компонент South Bridge набора микросхем, который содержит реализации интерфейсаIDEиUSB.

Рисунок 5 – Внешний вид разъемовPCI

IDE(рисунок 6) – это основной интерфейс, используемый для подключения жесткого диска к современному персональному компьютеру. Фактически он представляет собой связь между системной платой и электроникой или контроллером, встроенными в накопитель. Этот интерфейс постоянно развивается — на сегодняшний день создано несколько модификаций.

Интерфейс IDE, широко используемый в запоминающих устройствах современных компьютеров, разрабатывался как интерфейс жесткого диска. Однако сейчас он используется для поддержки не только жестких дисков, но и многих других устройств, например накопителей на магнитной ленте,CD/DVD-ROM, дисководовZipи др.

Рисунок 6 – Внешний вид разъема IDE

IDE (Integrated Drive Electronics) представляет собой обобщающий термин, применимый практически к каждому дисководу со встроенным контроллером. В настоящий момент интерфейс IDE получил официальное название АТА, принятое в качестве стандарта ANSI (Американский Национальный Институт Стандартов). Название АТА, относящееся к оригинальной параллельной версии интерфейса, обозначает жесткий диск, подключенный непосредственно к шине АТ, которая более известна как 16-разрядная шинаISA.

ATAявляется 16-разрядным параллельным интерфейсом. В начале 2001 года был официально представлен новый интерфейс, получивший названиеSerialATA.SerialATA(SATA) единовременно передает по кабелю не более одного бита данных, что позволяет значительно уменьшить сечение и длину используемого кабеля за счет повышения частоты передачи данных.SATAпредставляет собой совершенно новую конструкцию физического интерфейса, сохранившую при этом программную совместимость с параллельным интерфейсомATA. Название АТА относится к параллельной версии интерфейса, а названиеSATA— к интерфейсуSerialATA(рисунок 7).

Рисунок 7 - Внешний вид разъема SATA

Разъем IDEна системной плате во многих компьютерах представляет собой просто “усеченный” разъем шины расширения. В стандартном вариантеATAIDEиспользуются разъемы с 40 контактами из возможных 98, имеющихся в разъеме 16-разрядной шиныISA.

Современные интерфейсы ATA/IDE имеют ограничение емкости диска в 136,9 Гбайт. Кроме того, в зависимости от версии BIOS, значение этого ограничения может находиться еще ниже, например на отметке в 8,4 Гбайт или даже 512 Мбайт. Это может случиться в результате наложения ограничений для ATA на ограничения BIOS, что в конечном итоге может привести к еще большим ограничениям.

Рисунок 8 – Схема подключения накопителя по интерфейсу IDE

Базовая система ввода-вывода BIOS(Basic Input Output System) называется так потому, что включает в себя обширный набор программ ввода-вывода, благодаря которым операционная система и прикладные программы могут взаимодействовать с различными устройствами, как самого компьютера, так и с устройствами, подключенными к нему. В архитектуре компьютера система BIOS занимает особое место. С одной стороны, ее можно рассматривать, как составную часть аппаратных средств, с другой стороны, она является как бы одним из программных модулей операционной системы.

Система BIOS, помимо программ взаимодействия с аппаратными средствами на физическом уровне, содержит программу тестирования при включении питание компьютера POST (Power-On-Self-Test) и программу начального загрузчика. Последняя программа необходима для загрузки операционной системы с соответствующего накопителя.

Система BIOS в IBM-совместимыхкомпьютерах реализована в виде одной или двух микросхем (рисунок 9), установленных на системной плате компьютера. Наиболее перспективным устройством для хранения системы BIOS является сейчас флэш-память. Это позволяет легко модифицировать старые или добавлять дополнительные функции для поддержки новых устройств, подключаемых к компьютеру.

Наиболее известные производители BIOS-программ: American Megatrends Inc. (AMI), Award Software и Phoenix Technologies.

Рисунок 9 – Общий вид микросхемы BIOS

Система BIOS в компьютерах неразрывно связана с неизменяемой памятью (CMOS RAM), в которой хранится информация о текущих показаниях часов, значение времени для будильника, конфигурации компьютера: количестве памяти, типах накопителей и т.д. Именно в этой информации нуждаются программные модули системы BIOS. Название CMOS RAM обязано тому, что эта память выполнена на основе структур (CMOS -Complementary Metal-Oxide-Semiconductor) которые отличаются малым энергопотреблением.

В системе BIOS имеется программа, называемая Setup, которая может изменять содержимое CMOS-памяти.Вызывается эта программа определенной комбинацией клавиш, которая обычно выводится в качестве подсказки на экран монитора после включения питания компьютера. В случае повреждения микросхемы CMOS RAM (а также при разряде батареи или аккумулятора) программа Setup имеет возможность воспользоваться информацией по умолчанию (BIOS Setup Default Values), которая хранится в таблице соответствующей микросхемы ROM BIOS.

Процессор (микропроцессор (МП))-это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией (рисунок 10).

Рисунок 10 - Вид процессора сверху и снизу

В состав микропроцессора входят:

- устройство управления (УУ) - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;

- арифметико-логическое устройство(АЛУ) - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительныйматематический сопроцессор);

- микропроцессорная память(МПП) - служит для кратковременного характера, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);

- интерфейсная система микропроцессора- реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс - совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O - Input/Output port) - аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.

Процессоры можно классифицировать по двум основным параметрам: разрядности и быстродействию. Быстродействие процессора измеряется в мегагерцах (МГц); 1 МГц равен миллиону тактов в секунду. Чем выше быстродействие, тем лучше (тем быстрее процессор). Разрядность процессора — параметр более сложный. В процессор входит три важных устройства, основной характеристикой которых является разрядность:

- шина ввода и вывода данных;

- внутренние регистры;

- шина адреса памяти.

Шина данных – это набор соединений (или выводов) для передачи или приема данных. Чем больше сигналов одновременно поступает на шину, тем больше данных передается по ней за определенный интервал времени и тем быстрее она работает. Разрядность шины данных подобна количеству полос движения на скоростной автомагистрали; точно так же, как увеличение количества полос позволяет увеличить поток машин по трассе, увеличение разрядности позволяет повысить производительность.

Современные процессоры типа Pentium имеют 64-разрядные внешние шины данных. Это означает, что процессоры Pentium, включая оригинальный Pentium, Pentium Pro и Pentium II, могут передавать в системную память (или получать из нее) одновременно 64 бита данных.

Разрядность шины данных процессора определяет также разрядность банка памяти. Это означает, что 32-разрядный процессор, например класса 486, считывает из памяти или записывает в память 32 бита одновременно.

Количество битов данных, которые может обработать процессор за один прием, характеризуется разрядностью внутренних регистров. Регистр — это, по существу, ячейка памяти внутри процессора; например, процессор может складывать числа, записанные в двух различных регистрах, а результат сохранять в третьем регистре. Разрядность регистра определяет количество разрядов обрабатываемых процессором данных, а также характеристики программного обеспечения и команд, выполняемых чипом. Например, процессоры с 32-разрядными внутренними регистрами могут выполнять 32-разрядные команды, которые обрабатывают данные 32-битными порциями, а процессоры с 16-разрядными регистрами этого делать не могут.

Шина адреса представляет собой набор проводников; по ним передается адрес ячейки памяти, в которую или из которой пересылаются данные. Как и в шине данных, по каждому проводнику передается один бит адреса, соответствующий одной цифре в адресе. Увеличение количества проводников (разрядов), используемых для формирования адреса, позволяет увеличить количество адресуемых ячеек. Разрядность шины адреса определяет максимальный объем памяти, адресуемой процессором.

Шины данных и адреса независимы, и разработчики микросхем выбирают их разрядность по своему усмотрению, но, чем больше разрядов в шине данных, тем больше их и в шине адреса. Разрядность этих шин является показателем возможностей процессора: количество разрядов в шине данных определяет способность процессора обмениваться информацией, а разрядность шины адреса — объем памяти, с которым он может работать.

Во всех современных процессорах имеется встроенный (первого уровня) кэш-контроллер с кэш-памятью. Кэш — это быстродействующая память, предназначенная для временного хранения программного кода и данных. Обращения к встроенной кэш-памяти происходят без состояний ожидания, поскольку ее быстродействие соответствует возможностям процессора.

Использование кэш-памяти уменьшает традиционный недостаток компьютера, состоящий в том, что оперативная память работает более медленно, чем центральный процессор (так называемый эффект “бутылочного горлышка”). Благодаря кэш-памяти процессору не приходится ждать, пока очередная порция программного кода или данных поступит из относительно медленной основной памяти, что приводит к ощутимому повышению производительности.

Оперативная память — это рабочая область для процессора компьютера. В ней во время работы хранятся программы и данные. Оперативная память часто рассматривается как временное хранилище, потому что данные и программы в ней сохраняются только при включенном компьютере или до нажатия кнопки сброса (reset). Перед выключением или нажатием кнопки сброса все данные, подвергнутые изменениям во время работы, необходимо сохранить на запоминающем устройстве, которое может хранить информацию постоянно (обычно это жесткий диск). При новом включении питания сохраненная информация вновь может быть загружена в память.

Устройства оперативной памяти иногда называют запоминающими устройствами с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором. Однако иногда термин память относится также к внешним запоминающим устройствам, таким как диски и накопители на магнитной ленте.

Микросхемы оперативной памяти (RAM) иногда называют энергозависимой памятью: после выключения компьютера данные, хранимые в них, будут потеряны, если они предварительно не были сохранены на диске или другом устройстве внешней памяти. Чтобы избежать этого, некоторые приложения автоматически делают резервные копии данных.

Физически оперативная память в системе представляет собой набор микросхем или модулей, содержащих микросхемы, которые обычно подключаются к системной плате (рисунок 11). Эти микросхемы или модули могут иметь различные характеристики и, чтобы функционировать правильно, должны быть совместимы с системой, в которую устанавливаются.

Рисунок 11 – Внешний вид модулей оперативной памяти

В современных компьютерах используются запоминающие устройства трех основных типов:

- ROM (Read Only Memory) - постоянное запоминающее устройство (ПЗУ);

- DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки;

- SRAM (Static RAM). Статическая оперативная память.

Динамическая оперативная память (Dynamic RAM — DRAM) используется в большинстве систем оперативной памяти современных персональных компьютеров. Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости.

Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти.

Чтобы сократить время ожидания, стандартная память DRAM разбивается на страницы. Обычно для доступа к данным в памяти требуется выбрать строку и столбец адреса, что занимает некоторое время. Разбивка на страницы обеспечивает более быстрый доступ ко всем данным в пределах некоторой строки памяти, т.е. если изменяется не номер строки, а только номер столбца. Такой режим доступа к данным в памяти называется (быстрым) постраничным режимом (Fast Page Mode), а сама память — памятью Fast Page Mode.

Страничная организация памяти — простая схема повышения эффективности памяти, в соответствии с которой память разбивается на страницы длиной от 512 байт до нескольких килобайтов. Электронная схема пролистывания позволяет при обращении к ячейкам памяти в пределах страницы уменьшить количество состояний ожидания. Если нужная ячейка памяти находится вне текущей страницы, то добавляется одно или больше состояний ожидания, так как система выбирает новую страницу.

Существует тип памяти, совершенно отличный от других, — статическая оперативная память (Static RAM — SRAM). Она названа так потому, что, в отличие от динамической оперативной памяти (DRAM), для сохранения ее содержимого не требуется периодической регенерации. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Время доступа SRAM не более 2 наносекунд, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из шести транзисторов. Использование транзисторов без каких-либо конденсаторов означает, что нет необходимости в регенерации. (Ведь если нет никаких конденсаторов, то и заряды не теряются.) Пока подается питание, SRAM будет помнить то, что сохранено.

По сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высока. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластеризованное их размещение не только увеличивает габариты микросхем SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM. Например, емкость модуля DRAM может равняться 64 Мбайт или больше, в то время как емкость модуля SRAM приблизительно того же размера составляет только 2 Мбайт, причем их стоимость будет одинаковой. Таким образом, габариты SRAM в среднем в 30 раз превышают размер динамической оперативной памяти, то же самое можно сказать и о стоимости. Все это не позволяет использовать SRAM в качестве оперативной памяти в персональных компьютерах.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности PC. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память непосредственно используется процессором при чтении и записи. Во время операций чтения данные в высокоскоростную кэш-память предварительно записываются из оперативной памяти с низким быстродействием, т.е. из DRAM.

А теперь поподробнее рассмотрим различные типы динамической памяти DRAM:

- SDRAM - это тип динамической оперативной памяти DRAM, работа которой синхронизируется с шиной памяти. SDRAM (Synchronous DRAM) передает информацию в высокоскоростных пакетах, использующих высокоскоростной синхронизированный интерфейс. SDRAM позволяет избежать использования большинства циклов ожидания, необходимых при работе асинхронной DRAM, поскольку сигналы, по которым работает память такого типа, синхронизированы с тактовым генератором системной платы.

- DDR SDRAM - память DDR (Double Data Rate — двойная скорость передачи данных) — это еще более усовершенствованный стандарт SDRAM, при использовании которого скорость передачи данных удваивается. Это достигается не за счет удвоения тактовой частоты, а за счет передачи данных дважды за один цикл: первый раз в начале цикла, а второй — в конце. Именно благодаря этому и удваивается скорость передачи (причем используются те же самые частоты и синхронизирующие сигналы).

Накопители на жестких магнитных дисках (НЖМД). Основными элементами накопителя являются несколько круглых алюминиевых или некристаллических стекловидных пластин. В отличие от гибких дисков (дискет), их нельзя согнуть; отсюда и появилось название жесткий диск (рисунок 12). В большинстве устройств они несъемные, поэтому иногда такие накопители называются фиксированными (fixed disk).

Рисунок 12 - Накопитель на жестких дисках

К основным элементам конструкции накопителя на жестком диске относится:

- диски;

- головки чтения/записи;

- механизм привода головок;

- двигатель привода дисков;

- печатная плата со схемами управления;

- кабели и разъемы;

- элементы конфигурации (перемычки и переключатели).

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA (Head Disk Assembly — блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали) являются съемными.

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый).

В накопителях обычно устанавливается несколько дисков, и данные записываются на обеих сторонах каждого из них. В большинстве накопителей есть по меньшей мере два или три диска (что позволяет выполнять запись на четырех или шести сторонах). Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.

Частота вращения жестких дисков в большинстве первых моделей составляла 3 600 об/мин и до последнего времени была почти стандартом для жестких дисков. Но в настоящее время частота вращения жестких дисков возросла, уже существуют модели с частотами 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин. Скорость работы того или иного жесткого диска зависит от частоты его вращения, скорости перемещения системы головок и количества секторов на дорожке.

Рисунок 13 - дорожки и секторы накопителя на жестких дисках

Дорожка — это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байт, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами (рисунок 13).

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска — от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета HD (High Density) формата 3,5 дюйма (емкостью 1,44 Мбайт) содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1), и каждая дорожка цилиндра разбита на 18 секторов (1-18). При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочей служебной информации, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации.

Утверждать, что размер любого сектора равен 512 байт, не вполне корректно. На самом деле в каждом секторе можно записать 512 байт данных, но область данных — это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт. В различных накопителях пространство, отводимое под заголовки (header) и заключения (trailer), может быть различным, но, как правило, сектор имеет размер 571 байт.

Различают два вида форматирования диска:

- форматирование низкого уровня

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов, а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.

- форматирование высокого уровня

При форматировании высокого уровня операционная система (Windows 9х, Windows NT или DOS) создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома (Volume Boot Sector — VBS), две копии таблицы размещения файлов (FAT) и корневой каталог (Root Directory). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже “обходит”, во избежание проблем, дефектные участки на диске.

S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology — технология самотестирования, анализа и отчетности) — это новый промышленный стандарт, описывающий методы предсказания появления ошибок жесткого диска. При активизации системы S.M.A.R.T. жесткий диск начинает отслеживать определенные параметры, чувствительные к неисправностям накопителя или указывающие на них. В результате такого отслеживания можно предсказать сбои в работе накопителя. Если на основе отслеживаемых параметров вероятность появления ошибки возрастает, S.M.A.R.T. генерирует для BIOS или драйвера операционной системы отчет о возникшей неполадке, который указывает пользователю на необходимость немедленного резервного копирования данных до того момента, когда произойдет сбой в накопителе.