Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_GA_1_semestr_PI.doc
Скачиваний:
88
Добавлен:
20.12.2018
Размер:
2.63 Mб
Скачать
    1. Формальная производная, ее свойства

Многочлен f(x+y)-f(x) делится на y без остатка (проверить по теореме Безу). Положим . Многочлен F(x,0) называют производной многочлена f(x) и обозначают .

Теорема 2.19 (Свойства производной)

Доказательство следует из определения производной.

Говорят, что кратность корня a многочлена f(x) равна k, если f(x) делится на и не делится (без остатка) на .

Теорема 2.20 (Кратность корня)

Если a корень многочлена f(x) кратности k, то a корень его производной кратности k-1.

Доказательство. Пусть a корень кратности k многочлена f(x). Тогда f(x) представим в виде произведения , причём . Производная от f(x) равна , где . Поскольку , то теорема доказана.

Следствие 2.6 Многочлен не имеет кратных множителей.

Доказательство. Перейдём к полю разложения f(x). Многочлен над этим полем имеет те же самые корни, что и f(x), только кратности 1. Вернёмся в исходное поле P. Многочлен разлагается на те же неприводимые множители что и f(x), только кратности 1.

      1. Производные высоких порядков

Производную порядка k от многочлена f(x) обозначим . При k=0 под будем понимать исходный многочлен.

Лемма 2.1

.

Доказательство проведём индукцией по j. При j=1 получаем формулу дифференцирования произведения. Пусть формула верна для j-1. Покажем её справедливость для j. Имеют место равенства. Взяв производную от каждого слагаемого, приведя подобные, получим требуемое равенство.

Следствие 2.7 Условие при i=0,…,k-1 и равносильно тому, что - корень f(x) кратности k.

Доказательство. Пусть - корень f(x) кратности k, тогда , причём . Производная порядка i равна . Подставив получим равенства при i=0,…,k-1 и . Обратно, разложим f(x) по степеням , т.е. . Легко проверить и значит - корень f(x) кратности k.

    1. Интерполяционный многочлен Лагранжа-Сильвестра

В ряде случаев необходимо найти многочлен наименьшей степени, у которого на некотором множестве заданы не только его значения, но и значения производных до определенных порядков. Пусть на множестве точек заданы значения функции и её производных высших порядков. Под будем понимать значение производной порядка i в точке . Под производной порядка 0 будем понимать саму функцию. Пусть заданы значения , где j=1,…,k и .

Теорема 2.21 (Интерполяционный многочлен Лагранжа - Сильвестра)

Существует единственный многочлен h(x) степени меньше , удовлетворяющий равенствам , где j=1,…,k и .

Доказательство. Положим , . Для i=1,…,k определим числа и далее по индукции , где . Многочлен удовлетворяет равенствам: при и , и . Что бы убедится в справедливости равенств найдём производную j порядка . Поскольку при и , то равенства при и установлены. Подставим теперь и получим Подставив вместо равное ему выражение, после приведения подобных, получим равенство . Далее осталось написать интерполяционный многочлен . Поскольку степень каждого слагаемого меньше , то и степень суммы меньше . Единственность интерполяционного многочлена покажем методом от противного. Допустим, существует два интерполяционных многочлена h(x) и g(x). Их разность имеет корнем кратности не меньше и значит, делится на w(x) без остатка. Поскольку степень w(x) заведомо больше чем степень h(x)-g(x), то h(x)=g(x).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]