Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_GA_1_semestr_PI.doc
Скачиваний:
88
Добавлен:
20.12.2018
Размер:
2.63 Mб
Скачать
    1. . Прямая сумма подпространств. Проекция.

Определение 7.34 Сумма подпространств и называется прямой, если . Обозначение прямой суммы .

Теорема 7.42. Пусть . Тогда любой вектор из V единственным образом представляется в виде суммы векторов из подпространств и , x=y+z. Вектор y называется проекцией x на параллельно , а вектор z называется проекцией x на параллельно .

Доказательство. Допустим, найдётся вектор , который раскладывается в сумму векторов из подпространств и не единственным образом. Пусть , где и . Тогда справедливо равенство, в левой части которого стоит вектор из , а в правой – вектор из . Поскольку пересечение этих подпространств состоит только из нулевого вектора, то , и, значит, a=c, b=d.

Следствие 7.23. Если сумма прямая, то и базис получается объединением базисов V и W.

Доказательство. По определению прямой суммы размерность пересечения равна нулю, и, значит, (Теорема 7 .41). Обозначим через базис V, а через - базис W. Покажем линейную независимость системы векторов . Допустим, найдутся коэффициенты, что , тогда справедливо равенство . Поскольку в левой части равенства стоит вектор из V, а в правой – вектор из W, то и , и, значит, все коэффициенты равны нулю. Число векторов в линейно независимой системе векторов совпадает с размерностью суммы пространств, следовательно, она является базисом.

    1. Изменение координат вектора при изменении базиса.

Пусть в пространстве V заданы два базиса: и . Координаты вектора x в этих базисах обозначим через и соответственно. Установим связь между координатами вектора в различных базисах. Выразим векторы первого базиса через векторы второго: . По определению координат . Подставим вместо векторов базиса e, их выражения через векторы базиса f, получим равенство. Преобразуем левую часть равенства (поменяем порядок суммирования) . В силу единственности координат вектора выводим равенства , или в матричном виде , где на пересечении строки i и столбца j матрицы P стоит . Матрица P называется матрицей перехода. Отметим, что в j столбце матрицы P стоят координаты вектора в базисе f.

Обозначим через матрицу перехода от базиса e к базису f. Равенство справедливо для всех векторов x. Следовательно, , или . В качестве следствия из этого равенства и условия существования обратной матрицы выводим невырожденность матрицы перехода. Обратно, пусть матрица P – невырожденная. Положим . Система векторов образует базис в пространстве V. Действительно, поскольку матрица P невырожденная, то к ней существует обратная матрица . Далее, (выражение представляет собой элемент произведения матриц PT=E, стоящий на пересечении строки s и столбца i). Поскольку каждый вектор из базиса e линейно выражается через векторы системы f, то система f является полной, а т.к. система состоит из n векторов, то она является минимальной, а, значит, образует базис пространства. Матрицей перехода от базиса e к базису f является матрица P.

Рассмотрим систему векторов из арифметического пространства . Матрицу, составленную из столбцов , обозначим A.

Теорема 7.43 Критерий линейной независимости системы векторов.

Система векторов из арифметического пространства является линейно зависимой тогда и только тогда, когда определитель матрицы равен нулю.

Доказательство. Если система линейно зависима, то найдутся числа не все равные нулю, что . Не нарушая общности можно считать, что (иначе перенумеруем векторы), и (иначе поделим все числа на ). Определитель не изменится, если к первому столбцу прибавить остальные столбцы с коэффициентами , а определитель матрицы, содержащий нулевой столбец равен нулю. Таким образом, если система векторов линейно зависима, то определитель матрицы равен нулю. Если матрица A невырожденная, её можно рассматривать как матрицу перехода от базиса к .

Система векторов из арифметического пространства является линейной независимой тогда и только тогда, когда её можно дополнить до базиса всего пространства какими то векторами из системы . По доказанной теореме, система образует базис в том и только том случае, если определитель матрицы отличен от нуля. Определитель этой матрицы, с точность до знака, совпадает с минором k-го порядка матрицы , получающегося вычёркиванием строчек с номерами . Следовательно, система векторов является линейно зависимой тогда и только тогда, когда все миноры k-го порядка матрицы равны нулю. Оформим полученный результат в виде теоремы.

Теорема 7.44 Система линейно зависима тогда и только тогда, когда все миноры k-го порядка матрицы равны нулю.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]