Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_GA_1_semestr_PI.doc
Скачиваний:
88
Добавлен:
20.12.2018
Размер:
2.63 Mб
Скачать
    1. Ранги матрицы.

Для матрицы можно дать три определения ранга:

  1. Столбцовый ранг - ранг системы столбцов.

  2. Строчечный ранг - ранг системы строк.

  3. Минорный ранг - Порядок наибольшего (по размеру) отличного от нуля минора.

Теорема 7.46. Все ранги равны.

Доказательство. Для доказательства достаточно показать равенство столбцового и минорного рангов. Действительно, при транспонировании матрицы минорный ранг не меняется, а столбцовый ранг становится строчечным.

Первое доказательство. Воспользуемся критерием линейной независимости (Теорема 7 .44).

Второе доказательство. Пусть максимальный по порядку не нулевой минор расположен на пересечении строк с номерами и столбцов с номерами из . Система линейных уравнений , где является крамеровской и, значит, имеет единственное решение, которое равно . Для выполняется равенство , при s=1,…,n. Пусть , . Рассмотрим минор . Вычтем из последнего столбца остальные столбцы с коэффициентами и разложим по последнему столбцу. В результате получим (все миноры порядка больше k равны 0). Поскольку , то равенство выполняется при . Таким образом, все столбцы линейно выражаются через столбцы с номерами из множества . Система уравнений имеет единственное нулевое решение, следовательно, столбцы матрицы A с номерами из J образуют базу. Ранг системы столбцов совпадает с порядком максимального не нулевого минора, что и требовалось доказать.

Следствие 7.25. Ранг произведения матриц не превосходит ранга сомножителей.

Доказательство. Пусть C=AB. По определению произведения матриц, строки матрицы C являются линейными комбинациями строк матрицы B и, значит, . Аналогично, столбцы матрицы C – линейные комбинации столбцов матрицы A, и .

    1. Общее решение системы линейных уравнений.

Теорема 7.47. Размерность пространства решений однородной СЛУ равна

n-rgA.

Доказательство. Рассмотрим однородную систему линейных уравнений Ax=0. Множество решений системы не изменится, если из матрицы удалить линейно зависимые строки. Поэтому, можно считать, что число строк матрицы A совпадает с её рангом. Пусть J – множество номеров столбцов матрицы A, в которых расположен максимальный не нулевой минор, T – остальное множество номеров столбцов. Систему уравнений можно записать в виде , где подматрица матрицы A расположенная в столбцах с номерами из J, - вектор, образованный компонентами x с номерами из J. Обозначим столбец, у которого все компоненты равны 0, кроме i-ой, равной 1, через . Вектор , является решением системы линейных уравнений. Обозначим этот вектор через (). Система векторов является линейно независимой, так как в строках с номерами из T расположена единичная матрица, определитель которой не равен 0. Пусть y - произвольное решение системы линейных уравнений, тогда , и, учитывая равенство выводим и, значит, . Поскольку произвольное решение системы линейных уравнений является линейной комбинацией линейно независимой системы векторов , то эта система векторов является базисом и размерность подпространства решений равна n-rgA.

Позднее будет показано, что любое подпространство может быть задано некоторой СЛУ.

Теорема 7.48 Общее решение неоднородной системы линейных уравнений равно сумме частного решения и общего решения соответствующей однородной системы линейных уравнений.

Доказательство. Очевидно.

Множество решений системы линейных уравнений (не однородной) называется линейным многообразием.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]