Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан(35 нет).docx
Скачиваний:
47
Добавлен:
15.05.2015
Размер:
979.37 Кб
Скачать

39. Понятие экстремума, основные теоремы.

Точка называется точкой локального максимума функции , если существует такая окрестность этой точки, что для всех из этой окрестности выполняется неравенство: .

Точка называется точкой локального минимума функции , если существует такая окрестность этой точки, что для всех из этой окрестности .

Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума -локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.

Точка называется точкой строгого локального максимума функции , если для всех из окрестности этой точки будет справедливо строгое неравенство .

Точка называется точкой строгого локального минимума функции , если для всех из окрестности этой точки будет справедливо строгое неравенство .

Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.

Необходимое условие экстремума

Теорема

(Необходимое условие экстремума)

Если функция имеет экстремум в точке , то ее производная либо равна нулю, либо не существует.

Точки, в которых производная равна нулю: , называются стационарными точками функции.

Точки, в которых выполняется необходимое условие экстремума для непрерывной функции, называются критическими точками этой функции. То есть критические точки - это либо стационарные точки (решения уравнения ), либо это точки, в которых производная не существует.

Первое достаточное условие экстремума

Теорема

(Первое достаточное условие экстремума)

Пусть для функции выполнены следующие условия:

  1. функция непрерывна в окрестности точки ;

  2.  или не существует;

  3. производная при переходе через точку меняет свой знак.

Тогда в точке функция имеет экстремум, причем это минимум, если при переходе через точку производная меняет свой знак с минуса на плюс; максимум, если при переходе через точку производная меняет свой знак с плюса на минус.

Если производная при переходе через точку не меняет знак, то экстремума в точке нет.

Таким образом, для того чтобы исследовать функцию на экстремум, необходимо:

  1. найти производную ;

  2. найти критические точки, то есть такие значения , в которых или не существует;

  3. исследовать знак производной слева и справа от каждой критической точки;

  4. найти значение функции в экстремальных точках.

Второе достаточное условие экстремума

Теорема

(Второе достаточное условие экстремума)

Пусть для функции выполнены следующие условия:

  1. она непрерывна в окрестности точки ;

  2. первая производная в точке ;

  3.  в точке .

Тогда в точке достигается экстремум, причем, если , то в точке функция имеет минимум; если , то в точке функция достигает максимум.

40. Выпуклость и вогнутость, точки перегиба, асимптоты.

График функции , дифференцируемой на интервале , является на этом интервале выпуклым, если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым, если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).