Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Pascal.DOC
Скачиваний:
23
Добавлен:
21.03.2015
Размер:
1.77 Mб
Скачать

Практическое задание n 2. 11

Построить оси координат с началом в середине экрана и многоугольник сил, действующих на тело. Определить величину уравновешивающей силы и вывести на экран ее значение. Построить вектор уравновешивающей силы другим цветом. Силы заданы проекциями на оси координат:

Y F1 F2

N Fx1 Fx2 Fx3 Fx4 Fx5 Fy1 Fy2 Fy3 Fy4 Fy5

1 5 7 -4 -3 -5 4 -7 -6 5 4 F3

2 8 4 7 -9 -10 -7 11 8 20 -14 F4

3 11 24 -32 26 -16 -21 -23 15 17 25 F5

4 21 15 18 -9 -24 -11 18 -17 14 -14 0 x5 x1 x4 x2 x3 X

Кинематика. В кинематике изучается движение тела (точки) без анализа причин (сил), вызывающих это движение. Основной задачей является построение траектории точки, а также определение скорости и ускорения точки в любой момент движения. Траекторией точки называется линия, описываемая точкой, движущейся в пространстве. Движение точки определяется уравнением (законом) движения, в котором устанавливается зависимость положения точки в пространстве от времени. В параметрической форме траектория точки описывается зависимостями: X=X(t), Y=Y(t).

Вектор скорости направлен по касательной к траектории движения точки.

Проекции скорости на оси координат равны: Vx = dX/dt; Vy = dY/dt;

Проекции ускорения на оси координат равны: Ax = dVx/dt; Ay = dVy/dt;

Рассмотрим уравнения, описывающие движение точки в некоторых случаях.

Для точки, начинающей движение в некоторый момент времени "t0" (полагается t0=0) под углом "fi" к горизонту со скоростью "V0" уравнения движения без учета сопротивления воздуха имеют вид:

X = V0*t*cos(fi); Y = V0*t*sin(fi) - 0. 5*g*t2;

Для точки, начинающей движение под углом "fi" к горизонту со скоростью "V0" траектория движения с учетом сопротивления воздуха пропорционального скорости точки имеет вид:

X = V0*cos(fi)*Fc(t); Y = (V0*sin(fi) + g/kc)*Fc(t) - g*t/kc;

где Fc(t) = (1-e(-kc*t))/kc; kc - коэффициент сопротивления.

g = 9. 81, м/с - ускорение свободного падения.

Для точки, движущейся над горизонтальной поверхностью расчетную область можно ограничить: X_max=V02 /g; Y_max=0.5*X_max. Время движения tp=2*V0*sin(fi)/g.

Y V xПрактическое задание n 2. 12

1. Построить траекторию движения точки без учета и с учетом сопротивления воздуха при начальных условиях: fi=450, V=1000, м/с, k=0. 01. Через равные интервалы времени выводить на графике вектор скорости и ускорения точки, умноженные на масштабные коэффициенты: KV=10; KA=1000. Построить траектории движения массива точек, моделирующих: а) фонтан, б) фейерверк.

2. Рассчитать процесс поражения воздушной цели, движущейся по траектории:

Xs = X1 - Vs*t; Ys = Y1; снарядом, летящим со скоростью Vc по траектории:

Xc = Vc*t*cos( fi ); Yc = Vc*t*sin( fi ); В случае поражения цели в некоторый момент времени tp: Xs=Xc; Ys=Yc; Решая эти уравнения, получаем :

Y Vs

* 1

Vc

fi

X

sin( fi )= ( W*Z + (1+Z2-W2) ) / (1+Z2);

cos( fi )= (1-sin2 ( fi ));

где Z=X1/Y1; W=Vs/Vc; tp=Y1/(Vc*sin( fi ));

Условие поражения цели: Vc > Vs*sin(fi).

Зададим X1=3000, Y1=10000, Vc=2000, Vs=900;

Y

Vc

fi * (Xs,Ys)

X

3. Рассчитать процесс поражения неподвижной цели с координатами (Xs, Ys) снарядом, летящим по траектории: Xc= Vc*t*cos( fi ); Yc = Vc*t*sin( fi ) - 0. 5*g*t2; В случае поражения цели в момент времени tp: Xs=Xc; Ys=Yc; Решая эти уравнения, получаем:

cos( fi )= Xs/L* (W (W2 - Z2 ) )/2 );

sin( fi )= (1-cos2 ( fi ));

где L2= Xs2 + Ys2; W= 1-Ys*g/ Vc2;

Z=g*L/Vc2; tp= Xs/(Vc*cos( fi ));

Условие поражения цели: Vc2 > g*(L+Ys). Зададим Xs=15000, Ys=100, Vc=500,

Y

* Vc

(X0, H)

* (Xs, Ys )

X

4.Рассчитать процесс поражения неподвижной цели с координатами (Xs,0) бомбой, сброшенной с самолета и летящей по траектории: Xc = X0 +Vc*t; Yc = H - 0. 5*g*t2; В случае поражения цели в момент времени tp: Xs=Xc; Ys=Yc; Решая эти уравнения, получаем:

H = 0. 5*g*L2 / Vc2 + Ys; L = Xs - X0.

где H - высота на которой должен лететь

самолет, чтобы сбросить бомбу не долетая

до цели расстояния "L". tp=L/Vc;

Зададим X0=150; Xs=80000; Ys=500; Vc=850;

Примечание к п. п. 2-4: Выводить на экран координаты цели и снаряда.

Y

V

r

X

Движение спутника вокруг планеты описывается в полярной системе координат уравнением:

r = p/(1 + e*cos(fi));

где r - расстояние от спутника до центра планеты,

fi - угловая координата,

p = (R0*V0/Rz)2/g - параметр эллипса,

e = p/R0-1 - эксцентриситет эллипса,

|e|<1 - эллипс, |e|=1 - парабола, |e|>1 - гипербола.

R0 - начальное расстояние от спутника до центра планеты,

Rz - радиус планеты, g - ускорение свободного падения при r=Rz,

V0 - начальная скорость спутника при r=R0.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]