Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Нормальная физиология / Общий_курс_физиологии_человека_и_животных_Том_2_Ноздрачев_А_Д_,

.pdf
Скачиваний:
5
Добавлен:
24.03.2024
Размер:
13.67 Mб
Скачать

Рис. 7.12. Групповые свойства крови: 1 — представление об агглютинации, 2 — группы крови (распределение агглютининов и агглютиногенов)

Как было установлено К. Ландштейнером и Я. Янским, в крови одних людей совсем нет агглютиногенов (группа I), в крови других содержится только агглютиноген А (группа II), у третьих — только агглютиноген В (группа III), четвертые содержат оба агглютиногена: А и В (группа IV). Групповые антигены находятся в эритроцитах, но они найдены также в лейкоцитах и тромбоцитах.

В плазме крови было открыто соответственно два агглютинирующих агента: агглютинин альфа и агглютинин бета, — которые склеивают эритроциты. В крови разных людей существуют либо один, либо два, либо ни одного агглютинина, никогда не встречаются в организме одновременно агглютиноген А с агглютинином альфа и агглютиноген В с агглютинином бета. Поэтому в организме не бывает агглютинации собственных форменных элементов.

Таким образом, существует четыре комбинации агглютиногенов и агглютининов системы АВО и соответственно выделено четыре группы крови. Их обозначают: I (О) — альфа, бета; II (А) — А, бета; III (В) — В, альфа; IV (А, В) — О.

7.8.1. Принадлежность людей к различным группам крови

Согласно существующей статистике, принадлежность людей к той или иной группе крови по системе АВО выглядит следующим образом. Примерно 40 % населения центральной Европы имеет I (О) группу, более 40 % — II (А) группу, 10 % или более — III (В), около 6 % — IV (АВ) группу. У 90 % коренных жителей Северной Америки

обнаружена принадлежность к I (О) группе. Учение о группах крови значительно усложнилось в связи с открытием новых агглютиногенов. Например, группа А оказалась состоящей из большого ряда подгрупп, помимо того, обнаружены и новые разновидности агглютиногенов — М, N, S, Р и т. д. Эти факторы иногда являются причиной осложнений при повторных переливаниях крови.

Людей с I группой крови раньше считали универсальными донорами, т. е. их кровь могла быть перелита всем без исключения лицам. Однако теперь известно, что эта универсальность не абсолютна. Это связано с тем, что у людей с кровью I группы в довольно значительном проценте обнаружены иммунные анти-А- и анти-В-агглютинины. Переливание такой крови может привести к тяжелым последствиям и даже к летальному исходу. Эти даиные послужили основанием к переливанию только одногруппной крови.

7.8.2. Резус-фактор

Одним из первых агглютиногенов крови человека, не входящих в систему АВО, был резус-агглютиноген, или резус-фактор, обнаруженный К. Ландштейнером и И. Винером в 1940 г. Он был получен при введении крови обезьян макак-резусов кроликам, в крови которых вырабатывали соответствующие антитела к эритроцитам обезьян. Как оказалось, эта сыворотка иммунизированных кроликов дает резко положительную реакцию агглютинации эритроцитов не только макак, но и человека. 85 % людей имеют в крови этот агглютиноген, из-за чего их называют резус-положительными (Rh+), а не содержащих его — резус-отрицательными (Rh-) (рис. 7.13).

Рис. 7.13. Резус-фактор (Rh) A — процентное соотношение людей с резус-положительной и резусотрицательной кровью. Б — представление о возникновении «резус-конфликта»: I — введение резусположительной крови резус-отрицательному реципиенту, II — выработка резус-антител в организме реципиента, III — повторное введение резус-положительной крови резус-отрицательному реципиенту, вызывающее агглютинацию

После переливания Rh+-крови Rh--человеку у последнего образуются специфические антитела к резус-антигену — антирезус-агглютиногены. Поэтому повторное введение этому же человеку Rh+-крови может вызвать у него агглютинацию эритроцитов и тяжелый гемотрансфузионный шок.

Резус-фактор имеет большое значение в клинической практике, и определение свойств крови на резус-фактор теперь обязательно проводят вместе с обычным определением групп крови.

Особое значение приобретает определение резус-фактора во время вступления в брак. При резус-положительном отце и резус-отрицательной матери (вероятность таких браков около 60 %) ребенок нередко наследует резус-фактор отца. В этом случае могут возникнуть серьезные осложнения, механизм которых состоит в следующем (рис. 7.14).

Рис. 7.14. Взаимодействие резус-несовместимых факторов матери и плода: I — иммунизация организма резус-отрицательной матери резус-положительными эритроцитами плода, II — выработка резусантител в организме матери, III — агглютинация резус-положительных эритроцитов плода антителами матери

У Rh--матери, вынашивающей Rh+-плод, организм постоянно иммунизируется резусантигеном плода, диффундирующим через плаценту. При этом у матери происходит образование Rh-агглютининов, которые через плаценту попадают в кровь плода и вызывают агглютинацию и гемолиз его эритроцитов. Высокая концентрация Rhагглютининов может привести к гибели плода или развитию тяжелого гемолитического заболевания. Особенно в тяжелой форме это проявляется при повторной беременности, поскольку в плазме матери остаются Rh-антитела, выработанные еще при предыдущей беременности.

Вприроде широко распространены вещества, сходные с групповыми антигенами человека. Они обнаружены у некоторых бактерий и могут быть причиной иммунизации. Это означает, что некоторые инфекции способны у людей стимулировать образование иммунных антител к эритроцитам. Данное обстоятельство имеет большое практическое значение.

Существование у человека той или иной группы крови является его индивидуальной биологической особенностью. Эта особенность начинает формироваться уже в раннем периоде эмбрионального развития и не меняется на протяжении всей последующей жизни. Некоторые групповые антигены содержатся не только в форменных элементах и плазме крови, они находятся и в других клетках, тканях и некоторых секретах, таких, как слюна, желудочный и кишечный соки.

Вэволюции позвоночных животных групповая принадлежность крови проявляется уже

уотдельных видов рыб, которые имеют несколько групп крови. Четыре группы у копытных, три — у жвачных, разные группы имеют хищные и птицы. У этих животных отсутствует структура системы крови, аналогичная системе человека. Она появляется и обнаруживает относительное подобие лишь у человекообразных обезьян.

7.9. Кроветворение и его регуляция

Кроветворение, или гемопоэз, — процесс, состоящий из серии клеточных дифференцировок, которые приводят к образованию зрелых форменных элементов крови. Это одна из наиболее рано возникающих функций организма, в которой в зависимости от вида клеток различают эритропоэз, лейкопоэз и тромбоцитопоэз. Существует эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, представляющий собой систему физиологической регенерации крови.

Уплодов млекопитающих образование и развитие клеток крови происходит в печени.

Кконцу эмбрионального периода процесс в печени прекращается и центральным органом, осуществляющим универсальный гемопоэз, становится костный мозг. Он обеспечивает стволовыми клетками тимус, лимфатические узлы и другие гемопоэтические органы.

7.9.1. Эритропоэз

Предшественниками эритроцитов являются клетки красного костного мозга (рис. 7.15). В них осуществляется синтез гемоглобина. Для образования гема используется железо двух белков: ферритина и сидерофилина. Суточная потребность организма в железе составляет 20—25 мг. Большая часть его поступает из отживших и уже разрушившихся эритроцитов, остальное доставляется с пищей. Для образования эритроцитов необходимы фолиевая кислота и витамин В12. Всасывание витамина B12 пищи сопровождается его взаимодействием с внутренним фактором Касла — гастромукопротеином, входящим в состав желудочного сока. Образующийся комплекс попадает в костный мозг (рис. 7.16), где стимулирует образование эритроцитов, способствуя синтезу глобулина. В эритропоэзе принимают также участие витамин С, активирующий синтез железосодержащей части молекулы гемоглобина, витамин В6, влияющий на синтез гема, и витамин В2, участвующий в образовании липидной стромы эритроцита.

Рис. 7.15. Элементы стимуляции эритропоэза: 1 — эритропоэтинчувствительные стволовые клетки, 2

— грудина, 3 эритроциты (Примечание: главная функция крови – транспорт крови)

Рис. 7.16. Один из механизмов регуляции эритропоэза: 1 — желудок, 2 — кровеносные сосуды, 3 — печень, 4 — грудина

В своем развитии эритроциты проходят несколько стадий. Предшественники зрелых форм — ретикулоциты — поступают в кровь и в течение нескольких часов превращаются

взрелые клетки. Ретикулоциты содержат хорошо выявляемые прижизненным окрашиванием гранулярные или нитевидные скопления базофильного вещества, исчезающего у зрелых форм. В обычных условиях количество ретикулоцитов в крови составляет, по разным данным, 1 —10 % от общего числа эритроцитов, что служит показателем эритропоэза.

Скорость эритропоэза может возрастать в несколько раз при обильных и быстрых кровопотерях, патологическом разрушении зрелых форм, несоответствии между потребностью тканей в кислороде и его поступлением (гипоксия в любых формах ее проявления). В плазме крови в этих условиях появляются в значительных концентрациях особые ускоряющие эритропоэз вещества — эритропоэтины (см. рис. 7.15). Эритропоэтины представляют собой гормон гликопротеиновой природы, синтезируемый преимущественно почками, а также в небольших количествах печенью и подчелюстными слюнными железами. Эритропоэтин в небольших концентрациях постоянно присутствует

вплазме человека и животных. Основной клеткой-мишенью для эритропоэтина являются ядерные эритроидные предшественники в костном мозгу. Эритропоэтин увеличивает скорость образования гемоглобина. Помимо эритропоэтина на кроветворение оказывают влияние андрогены и ряд медиаторов.

Эритроциты живут относительно недолго, в среднем около 120 дней. При этом непрерывно образуются новые клетки и отмирают старые. Разрушение отживших эритроцитов происходит разными путями: они гибнут от механического травмирования во время движения по сосудам; часть клеток фагоцитируется мононуклеарной фагоцитарной системой печени и селезенки; старые эритроциты гемолизируются непосредственно в кровяном русле.

При разрушении эритроцитов гемоглобин распадается на гем и глобин. От гема отделяется железо. Оно сразу же используется для создания новых молекул гемоглобина. Возникающий его избыток запасается впрок в печени, селезенке, слизистой оболочке тонкой кишки. Железо вступает в соединение со специфическими белками, конечным итогом чего является образование ферритина и гемосидерина.

7.9.2. Лейкопоэз. Тромбоцитопоэз

Лейкоцитопоэз и тромбоцитопоэз менее изучены, чем эритро-поэз. Лейкопоэз находится в прямой зависимости от распада лейкоцитов: чем больше их распадается, тем больше образуется. Стимулирующее влияние на лейкопоэз оказывают нуклеиновые кислоты, гормоны гипофиза. Лейкопоэз возрастает также под влиянием продуктов распада тканей, микроорганизмов и их токсинов (см. рис. 7.8). Полагают, что эти вещества оказывают действие не прямо, а путем стимуляции лейкопоэтинов, которые «вмешиваются» в процесс дифференциации клеток костного мозга. Разрушение и появление новых лейкоцитов происходит непрерывно. Жизненный срок их различен. Они живут часы, дни, недели, часть лейкоцитов не исчезает на протяжении всей жизни человека или животного. Местом разрушения лейкоцитов является слизистая оболочка пищеварительного тракта, а также ретикулярная ткань.

Физиологическим регулятором процесса тромбоцитопоэза являются тромбоцитопоэтины. Химически они связаны с высокомолекулярной белковой фракцией, относящейся к гамма-глобулинам. В зависимости от места образования и механизма действия различают тромбоцитопоэтины короткого и длительного действия. Первые образуются в селезенке и стимулируют выход тромбоцитов в кровь. Вторые содержатся в плазме крови и стимулируют образование тромбоцитов в костном мозгу. Особенно интенсивно тромбоциты вырабатываются после кровопотерь. Спустя несколько часов число их может удвоиться.

Фактов, свидетельствующих о существовании специализированной системы регулирующей кроветворение, не существует. Однако обильная иннервация кроветворных тканей, наличие в них большого числа интероцепторов указывают на то, что эти органы включены в систему рефлекторных взаимодействий. Впервые идея нервной регуляции кроветворения и перераспределения форменных элементов крови была высказана С. П. Боткиным. Позднее это положение получило дальнейшее развитие в разнообразных методических условиях и было экспериментально подтверждено В. Н. Черниговским и А. Я. Ярошевским, показавшими наличие двусторонних связей кроветворных органов с центральными структурами нервной системы и возможность условно-рефлекторного вызова гемопоэза.

7.10. Лимфа

Лимфа является производной крови. Кровь, тканевая жидкость и лимфа вместе образуют внутреннюю среду организма.

Лимфа высших животных значительно отличается от гидролимфы кишечнополостных (медузы, гребневики), циркулирующей в их кишечно-сосудистой системе и непосредственно связанной со средой обитания, а также гемолимфы, которая заполняет сосуды и межклеточные пространства членистоногих и моллюсков, не имеющих замкнутой системы кровообращения.

У высших животных помимо лимфы существуют перилимфа и эндолимфа. Первая заполняет пространство между костью внутреннего уха и перепончатым лабиринтом, вторая составляет жидкое содержимое самого перепончатого лабиринта. Полости тела (плевральная, перитонеальная и др.), выстланные серозными оболочками, также содержат жидкость (см. рис. 7.1). Прямых анатомических связей этих полостей с лимфатическими сосудами не найдено. Полагают, что связь эта осуществляется посредством специальных приспособлений.

Образование лимфы и тканевой жидкости впервые было объяснено в середине прошлого столетия К. Людвигом. Согласно его фильтрационной теории, лимфообразование является результатом разницы между гидростатическим давлением в кровяных капиллярах и тканях. Позже эта теория была дополнена Э. Старлингом, который

считал, что кроме гидростатического давления важную роль играет разница в онкотическом давлении. Повышение гидростатического давления крови в капиллярах ведет к образованию лимфы, увеличение онкотического давления препятствует лимфообразованию. Из-за большой разницы давления крови в артериальном и венозном концах капилляров процесс фильтрации лимфы происходит в артериальном конце, возвращается лимфа в кровь в венозном. Возврату лимфы способствует и повышенное онкотическое давление венозного конца капилляров.

Функции лимфы, как и крови, направлены на поддержание относительного постоянства внутренней среды, т. е. гомеостаза. С помощью лимфы осуществляется возврат белков из тканевых пространств в кровь, участие в перераспределении воды в организме, молокообразовании, пищеварении и обмене веществ. Посредством транспорта из лимфоидных органов макрофагов, лимфоцитов и антител лимфа участвует в иммунных реакциях организма. Она играет решающую роль во всасывании и транспорте жиров и жирорастворимых веществ в кишке. Функция лимфы состоит и в удалении из межклеточного пространства веществ, которые не реабсорбируются в кровеносных капиллярах. Способствуя удалению жидкости из тканевого пространства, лимфатическая система выполняет дренажную функцию.

Лимфа представляет собой прозрачную или слабо опалесцирующую жидкость соленого вкуса щелочной реакции (рН 7,35—9,0). Содержание лимфы в разных органах различно; оно соответствует их функции. Наибольшее количество лимфы образуется в печени, что связано с транспортом синтезирующихся здесь белков. На 1 кг массы ее приходится в печени 21—36 мл, сердце — 5—18, селезенке — 3—12, мышцах конечности — 2—3 мл.

Находящаяся в тканях лимфа представляет собой депо жидкости, которая при необходимости используется для увеличения объема циркулирующей крови. У собак массой 10 кг через грудной проток за 1 сут протекает 500—600 мл лимфы. В лимфе, полученной из грудного протока, находится около 60 % белка по сравнению с его концентрацией в плазме крови. Это низкое содержание белка обусловливает меньшую по сравнению с кровью вязкость лимфы и более низкое коллоидно-осмотическое давление. Различие в содержании белков определяет диффузное равновесие между плазмой крови и внутриклеточной жидкостью, поддерживаемой лимфой (см. рис. 7.4). Лимфа имеет вместе с тем несколько более высокую концентрацию хлоридов и бикарбонатов, чем плазма крови. Количество и состав белков лимфы зависят от проницаемости кровеносных капилляров, поэтому концентрация белков в лимфе разных органов различна. Лимфа содержит фибриноген и протромбин, поэтому она свертывается. Более продолжительное, чем у крови, свертывание объясняется недостатком тромбоцитов. После свертывания лимфы образуется рыхлый желтоватый сгусток. Выступающую из него жидкость называют сывороткой.

На пути от тканей к венам лимфа проходит через биологические фильтры — лимфатические узлы. Здесь происходит задержка инородных частиц, микроорганизмов и их обезвреживание. Состав клеток лимфы не одинаков в разных участках лимфатического пути. В связи с этим различают периферическую, промежуточную и центральную лимфу.

К периферической относят лимфу, не прошедшую ни через один из узлов; к промежуточной — прошедшую через один-два узла; к центральной — лимфу, находящуюся в крупных лимфатических коллекторах, которые впадают в яремную вену и грудной лимфатический проток. В периферической лимфе клетки единичны, основную их массу составляют лимфоциты. В промежуточной лимфе число их возрастает в несколько раз. Здесь появляются нейтрофилы, эозинофилы, мало дифференцированные стволовые клетки. Больше всего форменных элементов в центральной лимфе. Так, в 1 мкл лимфы кошки содержится 1200 лимфоцитов, у кролика — 32600, у обезьян — 20400, у человека

— от 2000 до 20000.

Экстремальные воздействия, такие, как травмы, ожоги, обильные кровопотери, сопровождаются интенсивным лимфообразованием. Его повышение происходит и под

действием некоторых веществ (экстракты из пиявок, пептиды, гистамин), называемых лимфогенными. Механизм их действия основан на увеличении проницаемости стенки капилляров.

Заключение

Кровь представляет собой жидкую ткань, осуществляющую в организме целый ряд функций, основными из которых являются: 1) транспорт питательных веществ, метаболитов, веществ, подлежащих экскреции, газов, гормонов, клеток, не выполняющих дыхательные функции; 2) перенос тепла, передача силы (например, для локомоции у дождевых червей); 3) поддержание внутренней среды и др. Объем крови у человека в среднем составляет 7—8 % массы тела.

Кровь состоит из жидкой части (плазмы) и взвешенных в ней кровяных клеток

(эритроцитов, лейкоцитов, тромбоцитов). Объем клеток достигает 45 % объема крови.

Кровь — коллоидно-полимерный раствор. Растворителем в нем является вода, растворенными веществами — соли и низкомолекулярные вещества плазмы, коллоидным компонентом — белки и их комплексы. В течение всей жизни в организме поддерживается относительное постоянство объема и состава крови, несмотря на непрерывное разрушение и обновление кровяных клеток.

Плазма крови — бесцветная жидкость, состоящая из 90— 92 % воды, 8—10 % органических и минеральных веществ. Основными белками плазмы являются альбумины, глобулины, фибриноген. Функция белков заключается в обеспечении распределения воды между кровью и тканевой жидкостью, участии в поддержании водно-солевого равновесия

ворганизме, образовании иммунных тел, свертывании крови. Благодаря наличию белков плазма становится вязкой, в связи с этим форменные элементы равномерно распределены

вплазме и находятся во взвешенном состоянии. Одним из основных источников энергии для клеток организма является глюкоза плазмы. Помимо этих веществ в плазме содержатся жиры, аммиак, молочная кислота и др.

Из неорганических веществ плазмы большое значение имеют ионы натрия, кальция, калия, магния, хлора и др. Например, ионы Са2+ необходимы для свертывания крови, ионы Мg2+ — для углеводного обмена. От концентрации в плазме различных ионов зависит ее осмотическое давление, имеющее важное значение для распределения в тканях воды и растворенных веществ. Кроме различных ионов на величину осмотического давления влияют и другие вещества, например белки. Осмотическое давление, зависящее от содержания белков в плазме, называется онкотическим. Белки способствуют удержанию воды внутри сосудистой системы. Ионы входят в состав всех кислот, и поэтому от их концентрации зависит кислотность раствора (рН — логарифм концентрации водородных ионов, взятый с обратным знаком). рН артериальной крови равен 7,4, венозной — несколько ниже.

Поддержание постоянства рН крови и тканей обеспечивается наличием особых буферных систем. Из них наиболее важными являются: 1) карбонатная система, в состав которой входят угольная кислота и ее соли; 2) фосфатная система, деятельность которой связана с солями фосфорной кислоты; 3) буферная система белков плазмы; 4) буферная система гемоглобина. Последней принадлежит самая большая роль, так как на ее долю приходится около 75 % буферной способности крови. Постоянство рН крови и тканей обеспечивается легкими, почками, потовыми железами. Регуляция физико-химических свойств крови осуществляется сложными нейрогуморальными механизмами. Эритроциты

— красные кровяные клетки, их окраску определяет содержащееся в них вещество — гемоглобин. Гемоглобин состоит из белковой части — глобина — и небелковой — гема, содержащего двухвалентное железо. Гемоглобин человека и животных различается только строением белковой части, которая для каждого вида животного специфична.

Гемоглобин легко связывает и отщепляет кислород. Присоединяя кислород,

гемоглобин переходит в окисленную форму — оксигемоглобин; 1 г гемоглобина может связать 1,34 мл О2. Эта реакция протекает в легких. При условии перехода всего гемоглобина в окисленную форму количество кислорода, которое может содержаться в 100 мл крови, называют кислородной емкостью крови. Отдавая кислород в капиллярах, оксигемоглобин превращается в восстановленный гемоглобин. В капиллярах тканей гемоглобин способен также образовывать непрочное соединение с углекислым газом. В капиллярах легких, где содержание СО2 значительно меньше, последний отделяется от гемоглобина.

Лейкоциты — белые кровяные клетки, имеющие ядра разнообразной формы. Они неоднородны по своему строению и делятся на две группы: зернистые и незернистые. Между отдельными видами лейкоцитов существует определенное соотношение, называемое лейкоцитарной формулой. Важнейшая функция лейкоцитов — защитная. Они легко проникают через стенки сосудов к местам скопления инородных веществ, поглощают и отмершие клетки, освобождая от них организм.

Тромбоциты, или кровяные пластинки, участвуют в свертывании крови. При нарушении целостности органов и тканей под влиянием находящихся в тромбоцитах и плазме крови веществ происходит превращение жидкого белка плазмы — фибриногена — в гелеобразный фибрин. Вместе с кровяными клетками волокна этого белка образуют сгустки, которые задерживают и прекращают кровотечение. В свертывании крови

принимает участие большое число различных факторов, к числу которых относятся ионы Са2+.

Кровь не соприкасается непосредственно с клетками организма; посредниками между ними является тканевая жидкость, которая заполняет промежутки между клетками. Тканевая жидкость находится в постоянном движении и поступает вначале в лимфатические сосуды, а оттуда в кровь. Кровь вместе с лимфой и тканевой жидкостью составляют внутреннюю среду организма. Изменение состава крови тотчас же сказывается на составе тканевой жидкости. Постоянство состава внутренней среды является необходимым условием нормальной работы всех органов и тканей.

Для поддержания постоянства внутренней среды в организме существует большое число органов, систем, процессов и механизмов. Среди них выделяются внешние и внутренние барьеры организма. Внешними барьерами являются кожа, печень, селезенка, почки, органы дыхания, пищеварения.

Кожа выполняет множество важных функций, таких, как защитная, дыхательная, абсорбционная, выделительная, пигментообразующая. Она принимает участие также в терморегуляции, в обменных процессах, сосудистых и нервно-рефлекторных реакциях. Помимо того, кожа играет роль своеобразного фильтра, препятствующего избыточному выделению воды из глубины на поверхность. В коже сосредоточено огромное количество нервных окончаний, посредством которых осуществляется связь организма с внешней средой. Посредством стимуляции определенных точек кожи (точки акупунктуры) можно направленно изменять деятельность висцеральных органов притуплять чувство боли.

В обеспечении постоянства внутренней среды важнейшее значение принадлежит также селезенке и печени, являющимся в эмбриональной жизни органами кроветворения. В постнатальном периоде селезенка вырабатывает лимфоциты и моноциты, разрушает старые форменные элементы, служит хранилищем эритроцитов, которые выбрасываются в сосудистое русло при кровопотерях, мышечной работе, эмоциях. Она играет также важнейшую роль в процессе иммунитета. Печень является своеобразным депо антианемического фактора, витаминов, железа, меди и других веществ, разрушает ряд гормонов, обезвреживает токсины и яды. В ней образуются вещества, участвующие в свертывании крови и в деятельности антисвертывающей системы.

Структурной основой внутренних, или гистогематических, барьеров служит эндотелий капилляров. В каждом из органов гистогематические барьеры характеризуются избирательной проницаемостью, в результате чего клетки органа находятся в

специфической, именно им присущей среде. Эта избирательность наиболее выражена в гематоэнцефалическом барьере.

В сохранении постоянства внутренней среды огромное значение имеет способность организма защищаться от чужеродных тел и веществ. Эта защита осуществляется посредством иммунной системы. У млекопитающих иммунная систем представлена группой органов (селезенка, вилочковая железа, костный мозг, лимфатические узлы), а также специальными клетками, распределенными по всему организму. Часть из них постоянно находится в крови, лимфе, проникая во все ткани, элиминируя возникающие в результате мутаций или по другим причинам чуждые организму вещества и продукты.

Рекомендуемая литература

Актуальные проблемы гемостазиологий / Под ред. Б. В. Петровского. М., 1981.

Блуда В. П., Баркаган 3. С. Гольдберг Е. Д. Лабораторные методы исследовании системы гемостаза. Томск. 1980.

Кассирский Г. А., Алексеев Г. А. Клиническая гематология. М, 1970. Коробков А. В., Чеснокова С. А. Атлас по нормальной физиологии. М., 1987.

Кудряшов Б. А. Биологические проблемы регуляции жидкого состояния крови и ее свертывания. М., 1975.

Кузник Б. И., Скипетров В. П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз. М., 1974.

Петров Р. В. Иммунология. М., 1983.

Проблемы и гипотезы в учении о свертывании крови / Под ред. О. К. Гаврилова. М., 1981. Сравнительная физиология животных / Под ред. Л. Проссера. М., 1977. Т. 2.

Физиология системы крови / Под ред. В. Н. Черниговского. Л., 1979. Физиология человека / Под ред. Р. Шмидта, Ж. Тевса. М., 1985. Т. 1.

Шмидт-Ниельсен К. Физиология животных: Приспособление и среда. М., 1982. Т. 1.

Эволюционная физиология / Под ред. Е. М. Крепса. Л., 1983. Ч. 2.