Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на экзамен вяткин 2009.doc
Скачиваний:
582
Добавлен:
09.02.2015
Размер:
45.56 Mб
Скачать

40. Классическая теория теплоёмкости твёрдых тел (кристаллов). Закон Дюлонга и Пти.

Закон Джоуля-Коппа описывает теплоёмкость сложных (т.е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга-Пти. Каждый атом в молекуле имеет

три колебательных степени свободы, и он обладает энергией . Соответственно, молекула из n атомов обладает в n раз большей энергией:

Молярная теплоёмкость вещества равна:

то есть она в n раз больше теплоёмкости кристалла с одноатомными молекулами. Иными словами, молярная теплоёмкость вещества равна сумме теплоёмкостей составляющих его химических элементов. Важно отметить, что закон Джоуля-Коппа выполняется даже для кристаллов, содержащих в своей структуре не подчиняющиеся закону Дюлонга-Пти химические элементы.

Закон Дюлонга-Пти (Закон постоянства теплоёмкости) — эмпирический закон, согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R:где Rуниверсальная газовая постоянная.

Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трех направлениях, определяемыми структурой решетки, причем колебания по различным направлениям абсолютно независимы друг от друга. При этом получается, что каждый атом представляет три осциллятора с энергией E, определяемой следующей формулой:.

Формула вытекает из теоремы о равнораспределении энергии по степеням свободы. Так как каждый осциллятор имеет одну степень свободы, то его средняя кинетическая энергия равна K=kt/2, а так как колебания происходят гармонически, то средняя потенциальная энергия равна средней кинетической, а полная энергия - соответственно их сумме. Число осцилляторов в одном моле вещества составляет , их суммарная энергия численно равна теплоемкости тела - отсюда и вытекает закон Дюлонга-Пти.

41. Пространство скоростей. Функция распределения молекул по скоростям. Распределение Максвелла.

пространство скоростей- это, когда в качестве осей координат выступают скорости по соответствующим осям координат в псевдоевклидовом пространстве. Т.е.: скорости. (координата времени присутствует в не явном виде), так как координаты не однородные.

Распределение Ма́ксвелла— распределение вероятности, оно применимо к множеству свойств индивидуальных молекул в газе.

О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул.

функция распределения молекул газа по скоростям:

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

где является числом молекул имеющих энергиюпри температуре системыT, Nявляется общим числом молекул в системе и k, — постоянная Больцмана.

Распределение по вектору импульса:

Распределение по абсолютной величине импульса:

42. Распределение молекул по абсолютным значениям скоростей. Характерные скорости (наиболее вероятная, средняя, среднеквадратичная) в распределении Максвелла.

Аналогичная неравномерность имеет место и в распределении частиц в газе по скоростям. Случайный обмен импульсами и энергиями частиц при столкновениях приводит к некоторому разбросу кинетических энергий и скоростей молекул вокруг их средних значений, соответствующих установившейся в газе температуре. Случайные изменения скоростей молекул в результате столкновений можно рассматривать как случайное блуждание частиц, но не в реальном координатном пространстве, а в пространстве скоростей, осями в котором являются скорости частиц vx, vу, vz (рис.).

Поэтому все сказанное о хаотическом тепловом движении в реальном пространстве применимо и к распределению частиц по скоростям.

Наиболее вероятная величина скорости в газе — скорость vm.

.

Средняя скорость :

Cреднеквадратичной скорости

Все эти средние скорости близки друг другу.