Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пустынский Л.Н. Примеры и задачи по курсу Ядерная и нейтронная физика.doc
Скачиваний:
95
Добавлен:
20.01.2021
Размер:
2.84 Mб
Скачать

3.1. Законы сохранения в ядерных реакциях Задача 3.1

А льфа-частица с кинетической энергией Тα = 1,0 МэВ упруго рассеялась на покоящемся ядре 6Li. Определить кинетическую энергию ядра отдачи, отлетевшего под углом φ = 30º к первоначальному направлению движения α-частицы.

Решение. Запишем законы сохранения энергии и импульса для упругого рассеяния:

;

(3.1.1)

.

(3.1.2)

И зобразим графически закон сохранения импульса для процесса упругого рассеяния α-частицы на покоившимся ядре 6Li, которое произошло в точке «о». Верхние правые индексы « ' » обозначают величины после рассеяния.

По теореме косинусов

.

(3.1.3)

Поскольку энергия покоя α-частиц mαс2 >> Тα, то можно использовать классическую связь между импульсом и кинетической энергией. Тогда (3.1.3) приобретает вид

.

(3.1.4)

Выразим из (3.1.1), подставим в уравнение (3.1.4) и, освободившись от иррациональности, получим

МэВ.

(3.1.5)

Эта же задача может быть решена с помощью векторной диаграммы импульсов для упругого рассеяния, которая построена на рис. 3.1.1. Энергия ядра 6Li после соударения выражается через его импульс обычным образом:

.

(3.1.6)

Н о длина отрезка CB соответствует величине импульса . Для нахождения отрезка CB используем равнобедренный треугольник COВ: СВ = 2ОВ·cosφ, тогда

.

Подставляя последнее выражение в (3.1.6), получим

.

Полученное выражение для энергии полностью совпадает с выражением (3.1.5), но получено гораздо проще, что, в конечном итоге, оправдывает применение векторной диаграммы импульсов.

З адача 3.2

Нерелятивистский дейтон упруго рассеялся на покоящемся ядре под углом 30º. Под таким же углом к направлению движения налетающего дейтона отлетело и ядро отдачи. Какому нуклиду принадлежит это ядро?

Р ешение. Рассмотрение кинематики упругого рассеяния позволяет определить только массовое число ядра.

Изобразим графически закон сохранения импульса. Из равнобедренного треугольника АВС находим, что

.

Подставляя полученные значения импульсов в закон сохранения энергии (3.1.1), получим

,

откуда

а.е.м.

Рассеяние ядра дейтерия произошло на протоне (ядре протия).

Задача 3.3

Построить векторные диаграммы импульсов для упругого рассеяния нерелятивистской α-частицы на покоящихся ядрах 6Li, 4Не, 2Н, если угол рассеяния в α-частицы в СЦИ равен 60º. В каком случае связь между кинетической энергией рассеянной α-частицы и углом ее рассеяния неоднозначна? Найти для этих трех случаев значения максимально возможного угла рассеяния α-частицы.

Решение. Для анализа упругого рассеяния α-частицы построим векторные диаграммы импульсов для всех трех случаев.

Р ассеяние α-частицы на ядре 6Li. Отрезок АВ, изображающий импульс налетающей α-частицы, делим на 5 равных частей, т.к. mα/M(6Li) = 2/3. От точки А отсчитываем две части и ставим точку О. Из точки О радиусом ОВ проводим дугу ВD. Под углом = 60º из точки О проводим луч до пересечения с дугой ВD. Точку пересечения обозначаем буквой С и соединяем ее с точками А и В. Полученный отрезок АС изображает величину импульса α-частицы и направление ее движения после рассеяния в ЛСК, а отрезок СВ – величину импульса и направление движения ядра 6Li после соударения в ЛСК. Для различных параметров удара точка С может располагаться на дуге ВD в любом месте от точки B и до точки D. При этом величина импульса α-частицы после рассеяния (длина отрезка АС) однозначно связана с углом или углом . Следовательно, и кинетическая энергия p2/2m в этом случае является однозначной функцией угла рассеяния в обеих системах координат. Максимальные углы рассеяния и в этом случае определяются положением точки С при ее совпадении с точкой D и равны π.

Р ассеяние α-частицы на ядре 4Не. Поскольку массы сталкивающихся частиц равны, то отрезок АВ делим на две равные части и проводим дугу ВD с центром в точке О. Далее построения не отличаются от построений в предыдущем пункте задачи. В этом случае связь кинетической энергии рассеянной α-частицы с углами рассеяния оказывается также однозначной в обеих системах координат. Предельное значение угла также стремится к π. Однако, как нетрудно заметить, предельное значение угла  стремится к π/2. Из этого следует важный вывод о том, что угол рассеяния двух тел с одинаковой массой не может превышать π/2 в ЛСК.

Рассеяние α-частицы на ядре 2Н. О трезок АВ, изображающий импульс налетающей α-частицы, делим на 3 равных части, т.к. mα/M(2Н) = 2/1. От точки А отсчитываем две части и ставим точку О. Далее построения не отличаются от построений в предыдущих пунктах. Из диаграммы следует, что одному значению угла рассеяния в ЛСК соответствуют две возможные величины импульса рассеянной α-частицы (отрезки AС′ и АС), а следовательно, и два возможных значения кинетической энергии рассеянной α-частицы. Максимальное значение угла рассеяния α-частицы в СЦИ будет равно π. В ЛСК максимальное значение угла определяется положением касательной . Из прямоугольного треугольника сразу следует, что

и, следовательно,

.