Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Norfiz_Otvety_k_ekzamenu_1.DOCX
Скачиваний:
81
Добавлен:
06.05.2020
Размер:
885.97 Кб
Скачать

10. Строение биомембран…

Организация всех мембран имеет много общего, они построены по одному и тому же принципу. Основу мембраны составляет липидный бислой (двойной слой амфифильных липидов), которые имеют гидрофильную "головку" и два гидрофобных "хвоста". В липидном слое липидные молекулы пространственно ориентированы, обращены друг к другу гидрофобными "хвостами", головки молекул обращены на наружную и внутреннюю поверхности мембраны.

Липиды мембраны: фосфолипиды, сфинголипиды, гликолипиды, холестерин.

Выполняют, помимо формирования билипидного слоя, другие функции:

формируют окружение для мембранных белков (аллостерические активаторы ряда мембранных ферментов);

являются предшественниками некоторых вторых посредников;

выполняют "якорную" функцию для некоторых периферических белков.

Среди мембранных белков выделяют:

периферические - располагаются на наружной или внутренней поверхностях билипидного слоя; на наружной поверхности к ним относятся рецепторные белки, белки адгезии; на внутренней поверхности - белки систем вторичных посредников, ферменты;

интегральные - частично погружены в липидный слой. К ним относятся рецепторные белки, белки адгезии;

трансмембранные - пронизывают всю толщу мембраны, причем некоторые белки проходят через мембрану один раз, а другие - многократно. Этот вид мембранных белков формирует поры, ионные каналы и насосы, белки-переносчики, рецепторные белки. Трансмембранные белки играют ведущую роль во взаимодействии клетки с окружающей средой, обеспечивая рецепцию сигнала, проведение его в клетку, усиления на всех этапах распространения.

В мембране этот тип белков формирует домены (субъединицы), которые обеспечивают выполнение трансмембранными белками важнейших функций.

Основу доменов составляют трансмембранные сегменты, образованные неполярными аминокислотными остатками, закрученными в виде ос-спирали и внемембранные петли, представляющие полярные области белков, которые могут достаточно далеко выступать за пределы билипидного слоя мембраны (обозначают как внутриклеточные, внеклеточные сегменты), отдельно выделяют СООН- и NН2-терминальные части домена. Часто просто выделяют трансмембранную, вне- и внутриклеточную части домена - субъединицы. Белки мембраны также делят на:

структурные белки: придают мембране форму, ряд механических свойств (эластичность и т.д.); транспортные белки:

формируют транспортные потоки (ионные каналы и насосы, белки-переносчики);

способствуют созданию трансмембранного потенциала.

белки, обеспечивающие межклеточные взаимодействия:

адгезивные белки, связывают клетки друг с другом или с внеклеточными структурами;

белковые структуры, участвующие в образовании специализированных межклеточных контактов (десмосомы, нексусы и т.д.); белки, непосредственно участвующие в передаче сигналов от одной клетки к другой.

В состав мембраны входят углеводы в виде гликолипидов и гликопротеидов. Они формируют олигосахаридные цепи, которые располагаются на наружной поверхности мембраны.

Свойства мембраны:

Самосборка в водном растворе.

Замыкание (самосшивание, замкнутость). Липидный слой всегда замыкается сам на себя с образованием полностью отграниченных отсеков. Это обеспечивает самосшивание при повреждении мембраны.

Асимметрия (поперечная) - наружный и внутренний слои мембраны отличаются по составу.

Жидкостность (подвижность) мембраны. Липиды и белки могут при определенных условиях перемещаться в своем слое:

латеральная подвижность; вращения; изгибание,

а также переходить в другой слой:

вертикальные перемещения (флип-флоп)

5. Полупроницаемость (избирательная проницаемость, селективность) для конкретных веществ.

Функции мембран

Каждая из мембран в клетке играет свою биологическую роль.

Цитоплазматическая мембрана:

отграничивает клетку от окружающей среды;

осуществляет регуляцию обмена веществ между клеткой и микроокружением (трансмембранный обмен);

производит распознавание и рецепцию раздражителей;

принимает участие в образовании межклеточных кон тактов;

• обеспечивает прикрепление клеток к внеклеточному матриксу;

• формирует электрогенез.

Мембраны эндоплазматического ретикулума.

Гладкого эндоплазматического ретикулума участвуют:

в синтезе фосфолипидов, стероидов, полисахаридов;

в инактивации метаболитов;

в инактивации БАВ;

в детоксикации ядовитых веществ.

Шероховатого эндоплазматического ретикулума участвуют:

в синтезе секреторных, лизосомальных и мембранных белков;

в транспорте синтезированных белков в другие отделы клетки;

в прикреплении рибосом.

Мембрана аппарата Гольджи:

обеспечивает модификацию белков, синтезированных в эндоплазматическом ретикулуме, предназначенных для секреции и инкреции, включения в мембраны и др.;

участвует в синтезе фрагментов плазматических мембран, лизосом, секреторных гранул;

обеспечивает упаковку в везикулы, секреторные гранулы белков, БАВ.

Мембраны митохондрий:

2 мембраны: внутренняя и внешняя.

На внутренней мембране митохондрий локализованы ферменты, участвующие в транспорте электронов и синтезе АТФ (окислительное фосфорилирование).

Внешняя мембрана митохондрий содержит ферменты общего пути катаболизма.

Мембрана лизосомы:

отграничивает ферменты гидролазы от цитозоля, предохраняя клетку от автолиза;

обеспечивает поддержание в лизосоме кислой среды (рН-5,0), необходимой для действия гидролаз;

осуществляет эндоцитоз (фагоцитоз).

Ядерная мембрана:

состоит из внешней и внутренней мембран;

отграничивает генетический материал (ДНК) от цитозоля;

имеет поры, позволяющие РНК проникать из ядра в цитоплазму;

регуляторным белкам - из цитозоля в ядро.

Рецепторная функция мембран, внутриклеточные пути проведения сигнала

Рецепторная функция мембран обеспечивает взаимодействие клетки с микроокружением; участие клетки в реакциях ткани, органа; участие ядра, органелл в формировании реакции клетки на воздействии. Информационные сигналы, которые воздействуют на цитоплазматическую мембрану и вызывают значимые изменения в деятельности клетки, можно сгруппировать в три группы:

Изменение потенциала мембраны.

Изменение напряжение билипидного слоя мембраны или цитоскелета клетки.

Сигнальные молекулы (лиганды).

Классификация мембранных рецепторов

По локализации делятся на цитоплазматические и ядерные.

По механизму развития событий рецепторы делятся на ионотропные и метаботропные. Ионотропные рецепторы относят к быстроотвечающим рецепторам, ответ в течение миллисекунд.

Формируются интегральными белками, имеют несколько субъединиц. Содержат субъединицу, имеющую центр связывания для сигнальной молекулы.

Центры связывания для сигнальной молекулы у ионотропных рецепторов делятся на: потенциалзависимые сенсоры; механозависимые сенсоры;

сенсоры для внеклеточных и внутриклеточных лигандов. Метаботропные рецепторы - медленноотвечающие (секунды, минуты, часы). Метаботропные рецепторы делятся на две большие группы:

рецепторы, связанные с ионными каналами. Изменение проницаемости ионных каналов реализуется через вторые посредники;

рецепторы, не связанные непосредственно с мембранными каналами.

Рецепторы, не связанные непосредственно с мембранными каналами делятся на:

1. Рецепторы, связанные с G-белком. К этой группе относится большая часть рецепторов.

Каталитические рецепторы:

с собственной гуанилитциклазной активностью. К ним относятся рецепторы, обладающие способностью реализовывать сигнал через цГМФ опосредованный путь;

с собственной тирозинкиназной активностью. К ним относятся рецепторы к инсулину, активация которых вызывает фосфорилирование различных групп внутриклеточных белков, которые, меняя свою биологическую активность, вызывают широкий спектр реакций, присущих инсулину.

3. Рецепторы, освобождающие факторы транскрипции.

Находятся в мембранах цитоплазмы и эндоплазматического ретикулума. При активации от них протеолитическими ферментами цитозоля отщепляется пептидный фрагмент, который, попадая в ядро клетки, запускает транскрипцию соответствующего гена.

4. Ядерные рецепторы.

Белки-рецепторы стероидных гормонов - факторы транскрипции. Каждый рецептор имеет область для связывания лиганда и участок, взаимодействующий с ДНК.

Вторые посредники (мессенджеры) передачи сигнала в клетке.

В настоящее время ко вторым посредникам относят цАМФ, цГМФ, ДАГ, ИФ3, ионы Са++. Вторые посредники:

оказывают воздействие на несколько групп протеинкиназ;

изменяют активность нескольких групп фосфодиэстераз;

способны непосредственно влиять на активность некоторых ионных каналов.

цАМФ:

активируют протеинкиназу А (цАМФ-зависимую протеинкиназу);

активирует фосфодиэстеразу, катализирующую цГМФ. Уровень цАМФ определяется соотношением активности протеинкиназы А и фосфосфодиэстеразы, гидролизующей цАМФ.

Значительное влияние на активность цАМФ оказывают производные арахидоновой кислоты.

цГТФ:

активируют протеинкиназу G (цГМФ-зависимую протеинкиназу);

активируют фосфодиэстеразу, катализирующую цАТФ;

изменяют проницаемость ионных каналов (Na+ каналы и др.).

Инозитол-1, 4, 5-трифосфат (ИФ3).

Инозитол-1, 4, 5-трифосфат (ИФ3) или (ИТФ) способен связываться с кальциевыми каналами мембран цитоплазмы, эндоплазматического ретикулума и повышать их проницаемость. По градиенту концентрации Са++ входит в клетку через эти каналы, концентрация кальция в цитоплазме возрастает.

Диацилглицерол (ДАГ).

Диацилглицерол (ДАГ) за счет латеральной диффузии активирует мембранносвязанный фермент - протеинкиназу

С (ПК-С).

Кальций (Са++).

Кальций, находясь в ионизированном состоянии:

активирует фосфолипазу С;

наряду с ДАГ, Са++ является активатором протеинкиназы С;

связывает с кальмодулином;

активирует кальмодулинзависимые протеинкиназы.

Соседние файлы в предмете Физиология человека