Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Norfiz_Otvety_k_ekzamenu_1.DOCX
Скачиваний:
81
Добавлен:
06.05.2020
Размер:
885.97 Кб
Скачать

73. Транспорт газов кровью…

Механизмы связывания газов кровью

Физическое растворение

Химическое связывание

Физическое растворение. В жидкой части крови растворены газы воздуха: кислород, углекислый газ, азот. Растворение О2 и СО2 в воде не играет физиологической роли.

Химическое связывание кислорода кровью.

Насыщение кровью кислородом зависит от:

Альвеолярной вентиляции /pO2 в альвеолах/

Кровотока в легких

Диффузионной способности легких

Содержания гемоглобина в эритроцитах

г HHb способен связать 1,35 мл О2. При содержании гемоглобина 150 г/л (норма) каждые 100 мл крови переносят 20,8 мл О2. Это кислородная емкость крови.

Другой показатель-содержание кислорода в крови, взятой в различных участках сосудистого русла:

артериальной/20 мл О2/100 мл крови/ и венозной/14 млО2/100 мл крови/. Следующий показатель - артерио-венозная разница/норма 5-6 мл О2/100 мл крови/.

Отношение кислорода, связанного с гемоглобином к кислородной емкости крови/все выраженное на 100 мл крови/ называется насыщение гемоглобина кислородом. В артериальной крови оно составляет в норме 96%.

Гемоглобин присоединяет кислород с помощью непрочной водородной связи, с образованием оксигемоглобина Эта реакция обратима:

Нв+О2=НвО2 Направленность реакции зависит от содержания кислорода: если количество кислорода в крови увеличивается, то

реакция идет в сторону образования оксигемоглобина, если уменьшается - то в противоположную сторону.

Динамика взаимодействия Нв и О2 отражается кривой диссоциации оксигемоглобина. Эта кривая количественно определяет приведенную выше реакцию связывания гемоглобином кислорода. Кривая отражает общую закономерность: увеличение количества кислорода сопровождается усиленным образованием оксигемоглобина. Кривая диссоциации оксигемоглобина имеет S-образный вид. Это связанно с тем, что до 10 мм рт. ст. кислород связывается гемоглобином медленно, затем до 60-50 мм рт. ст. скорость реакции резко увеличивается, кривая круто поднимается вверх, при давлении 90 мм рт. ст., когда более 98% гемоглобина связано с кислородом, она вновь идет почти горизонтально.

Избыток СО2 и ацидоз сдвигает кривую диссоциации вправо, а недостаток СО2 и алкалоз – влево(эффект Бора). В легких реакция взаимодействия гемоглобина с кислородом идет в сторону образования оксигемоглобина, т.к. венозная кровь имеет напряжение кислорода 40 мм рт. ст., а в альвеолярном воздухе парциальное давление кислорода составляет 100 мм рт. ст.

В тканях напряжение О2 равно 20-40 мм рт. ст., а в артериальной крови - 100 мм рт. ст., в связи с этим реакция идет в сторону распада оксигемоглобина. Кровь отдает ткани часть О2..

Этот процесс оценивается коэффициентом утилизацией/ кислорода(КУК). КУК это отношение потребленного кислорода к кислородной емкости крови. В норме в покое 30-40%, при физ. нагрузках существенно возрастает. Для оценки эффективности газообмена вычисляют коэффициент использования кислорода (КИК). Он показывает количество кислорода в мл, которое потребляется из 1 литра воздуха. В норме он составляет 40 мл.

Химическое присоединение СО2

Напряжение СО2 в тканях составляет 60 мм.рт.ст., а в притекающей крови 50-60 мм.ст.рт. Благодаря этому СО2 переходит из ткани в кровь/46 мм.рт.ст./.

Основная форма связывания СО2 кровью - это образование бикарбонатов натрия и калия.

СО2 + Н2О = Н2СО3 Эта реакция обратима, ее направление зависит от количества СО2. Его увеличение сдвигает реакцию вправо,

уменьшение - влево. Образующаяся угольная кислота диссоциирует:

Н2 СО3 ---- Н+ + НСО3-

Следовательно, в эритроците образуются катионы Н+ и анионы НСО3-.катионы водорода вступают в реакцию восстановления гемоглобина: Н+ + Нв ННв, Анионы НСО3- - частично выходят из эритроцитов в плазму из-за разности концентраций. Таким образом,

в плазме и в эритроцитах появляется значительное количество анионов НСО3 - , которые в плазме

взаимодействуют с катионами натрия/55%/, а в эритроцитах – калия/35%/, образуя гидрокарбонаты Na и К.

Ключом всех этих реакций служит фермент карбоангидраза, который содержится в мембранах эритроцитов и катализирует обратимую реакцию соединения углекислого газа с водой.

Кроме того, небольшое количество углекислого газа /10%/ транспортируется в виде карбогемоглобина - соединения СО2 с гемоглобином.

74. Регуляция дыхания… Главная задача регуляции дыхания - чтобы потребление кислорода, поставка его тканям за счет внешнего

дыхания были адекватны функциональным потребностям организма.

Самый эффективный способ регуляции дыхания в целом - это регуляция внешнего дыхания.

Интенсивность внешнего дыхания зависит от варьирования его частоты и глубины. При этом изменяется доставка кислорода организму и выведение из него углекислого газа.

В регуляции дыхания можно выделить 3 группы механизмов:

Обеспечение организации дыхательного акта (последовательность вдоха и выдоха).

Перестройка дыхания в соответствии с потребностями организма - изменение частоты и глубины дыхания.

Регуляция тонуса кровеносных сосудов легких и бронхиального дерева.

1-ая группа. Механизмы организации дыхательного акта

Чередование вдоха и выдоха организуется благодаря деятельности дыхательного центра. Отличия

морфологического и функционального понятия НЦ.

Дыхательный центр представляет собой совокупность нейронов, объединенных общей функцией организации и регуляции дыхания и расположенных в разных "этажах" центральной нервной системы.

Выделяют 4 "этажа" :

спинной мозг,

продолговатый мозг,

варолиев мост,

высшие отделы ЦНС (гипоталамус, лимбическая система, кора больших полушарий). Каждый из перечисленных отделов имеет определенную функцию.

1 этаж: Спинной мозг содержит двигательные центры дыхательной мускулатуры. Представлены мотонейронами передних рогов спинного мозга:

грудной отдел (Th1 - Th6 - nn. intercostales) - межреберные нервы иннервируют наружные косые межреберные мышцы.

шейный отдел (С3 - С5) - n. frenicus. Диафрагмальный нерв иннервирует диафрагму.

При перерезке ЦНС между спинным и продолговатым мозгом процесс дыхания прекращается (т.к. центры спинного мозга не обладают автоматией).

При перерезке спинного мозга между шейным и грудным отделами дыхание сохраняется за счет сокращения диафрагмы (диафрагмальное дыхание).

2 этаж: Дыхательный центр продолговатого мозга (собственно дыхательный центр) обеспечивает последовательную смену вдоха и выдоха.

Открыт в 1885 г. русским исследователем Н.А. Миславским на дне 4-го желудочка продолговатого мозга. Это - парное образование. Связан проводящими путями с выше- и нижерасположенными нервными центрами (мотонейроны спинного мозга - 1-ый этаж дыхательного центра).

В составе дыхательного центра часть нейронов ответственна за вдох, другая часть - за выдох. Т. е. Выделяют т.н. Экспираторный и Инспираторный центры. Это - функциональные образования, т.к. морфологически их выделить нельзя.

Между центрами - реципрокные взаимоотношения. Это и обеспечивает чередование процессов вдоха и выдоха, т.к. активация нейронов одного отдела вызывает угнетение другого.

Собственно дыхательный центр обладает автоматией. 4-5 раз в минуту в ДЦ возникает самопроизвольное возбуждение, не связанное с поступлением импульсов из других центров, а обусловленное особенностью метаболизма клеток ДЦ. Это обеспечивает автономность от других влияний и поддержание жизненно важной функции на базальном уровне.

Таким образом, при пересечении ЦНС выше продолговатого мозга будет наблюдаться глубокое и редкое дыхание (дыхание Куссмауля), другие виды патологического дыхания: Чейн-Стокса, Биотта, Грокко.

Третий "этаж" дыхательного центра расположен в варолиевом мосту и назван пневмотАксическим

(таксис). Он способствует переключению возбуждения с центра вдоха на центр выдоха и наоборот. Возбуждение пневмотаксического центра приводит к угнетению центра вдоха, а нейроны, ответственные за выдох - активируются. Существует и обратный механизм, который обеспечивает переключение с выдоха на вдох. Перерезка ЦНС выше Варолиева моста позволяет поддерживать частоту дыхания на уровне 14-18 в минуту.

Роль периферических процессов в функционировании 2 и 3 этажа дыхательного центра, в организации дыхательного акта.

Четвертый этаж - высшие отделы ЦНС.

Гипоталамус - регулирует дыхание во время простых поведенческих актов:

при общей защитной реакции организма (боль, физическая работа);

высший центр терморегуляции, поэтому при гипертермии наблюдается учащение дыхания без изменения его глубины (значительно увеличивается вентиляция ОМП, что увеличивает теплоотдачу: дыхание собаки в жару). Лимбическая система - регуляция дыхания при эмоциях ("хмыкнул" - разная интонация м.б., "чего сопишь ?", крайние формы выражения эмоций - смех и плач - это измененные дыхательные движения).

Кора больших полушарий принимает участие:

в выработке условных дыхательных рефлексов,

- в приспособлении дыхания к изменяющимся условиям окружающей среды (глотание, пение, речь, ныряние, произвольное апное и гиперпное).

Дыхание - единственная функция внутренних органов, подверженная сознательной регуляции без предварительной тренировки (йоги), так как висцеральная функция реализуется через соматическую мускулатуру.

Соседние файлы в предмете Физиология человека