Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_matematika.docx
Скачиваний:
56
Добавлен:
25.09.2019
Размер:
1.03 Mб
Скачать

29. Взаимное расположение прямой и плоскости в пространстве. Признак параллельности прямой и плоскости (вывод)

Теорема: Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости. 

Доказательство: Пусть α - плоскость, a – не лежащая в ней прямая и a1 – прямая в плоскости α, параллельная прямой a. Проведем плоскость α1 через прямые a и a1. Плоскости α и α1 пересекаются по прямой a1. Если бы прямая a пересекала плоскость α, то точка пересечения принадлежала бы прямой a1. Но это невозможно, так как прямые a и a1 параллельны. Следовательно, прямая a не пересекает плоскостью α, а значит, параллельна плоскости α. Теорема доказана.

30. Взаимное расположение двух плоскостей в пространстве. Признак параллельности плоскостей (вывод)

Две плоскости называются параллельными, если они не пересекаются.

Параллельность плоскостей обозначается так: ǁß

Признак параллельности двух плоскостей (теорема):

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство: Пусть α и β - данные плоскости, a1 и a2 – прямые в плоскости α, пересекающиеся в точке A, b1 и b2 – соответственно параллельные им прямые в плоскости β.  Предположим, что плоскости α и β не параллельны, а значит пересекаются по некоторой прямой с. По теореме о признаке параллельности прямой и плоскости прямые a1 и a2, как параллельные прямые b1 и b2, параллельны плоскости β, и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости α через точку A проходят прямые a1 и a2, параллельные прямой с. Это невозможно по аксиоме. Что противоречит предположению.

31. Параллельное проектирование. Свойства параллельных проекций. Изображение фигур в стереометрии.

Параллельным переносом в пространстве называется такое преобразование, при котором произвольная точка (x; y; z) фигуры переходит в точку (x+a; y+b; z+c), где числа a, b, с одни и те же для всех точек (x; y; z).  Параллельный перенос в пространстве обладает следующими свойствами:  1. Параллельный перенос есть движение.  2. При параллельном переносе точки смещаются по параллельным прямым на одно и то же расстояние.  3. При параллельном переносе каждая прямая переходит в параллельную ей прямую или в себя.  4. Каковы бы ни были точки A и A`, существует единственный параллельный перенос, при котором точка A переходит в точку A`.  5. При параллельном переносе в пространстве каждая плоскость переходит либо в себя, либо в параллельную ей плоскость.

В стереометрии изучаются свойства фигур в пространстве (т.е. свойства пространственных фигур).

Многогранник представляет собой тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 1–10). Эти многоугольники называются гранями многогранника, а стороны и вершины многоугольников называются соответственно ребрами и вершинами многогранника. Многогранники могут быть выпуклыми ( рис. 1) и невыпуклыми (рис. 2).

Приведем примеры отдельных многогранников.

Куб представляет собой многогранник, у которого шесть граней, и все они — равные квадраты. У куба 12 равных ребер и 8 вершин (рис. 3).

Параллелепипед представляет собой многогранник, у которого шесть граней, и каждая из них — параллелограмм. Параллелепипед может быть прямым (рис. 4) или наклонным (рис. 5).

 

Параллелепипед, все грани которого прямоугольники, называют прямоугольным. Прямоугольный параллелепипед изображается также, как и прямой. Из сказанного следует, что куб — это прямоугольный параллелепипед с равными ребрами.

n -угольная пирамида представляет собой многогранник, одна грань которого, называемая основанием пирамиды, — некоторый выпуклый n-угольник, а остальные n граней — треугольники с общей вершиной (рис. 6). Эта общая вершина называется вершиной пирамиды, а треугольники — боковыми гранями пирамиды. О трезки, соединяющие вершину пирамиды с вершинами ее основания, называются боковыми ребрами пирамиды. Пирамида, в основании которой лежит правильный n-угольник, а боковые ребра равны между собой, называется правильной пирамидой (рис. 7). Пирамида, в основании которой лежит треугольник, н азывается треугольной пирамидой или тетраэдром. Таким образом, тетраэдр —

это четырехгранник. Все его четыре грани — треугольники. Тетраэдр, все четыре грани которого — равные правильные треугольники, называется правильным тетраэдром (рис. 8). Правильный тетраэдр —  это частный случай правильной треугольной пирамиды .

n -угольная призма представляет собой многогранник, две грани которого, называемые основаниями призмы, — равные n-угольники, а все остальные n граней — параллелограммы. Они называются боковыми гранями призмы. Призма может быть прямой (рис. 9) или наклонной (рис. 10).  У прямой призмы все боковые грани — прямоугольники, у наклонной призмы хотя бы одна грань — параллелограмм, не являющийся прямоугольником.

Параллелепипед — это призма, в основании которой лежит параллелограмм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]