Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фр.docx
Скачиваний:
66
Добавлен:
23.09.2019
Размер:
2.37 Mб
Скачать

5 1. Гликолиз. Химизм, значение, выход энергии атф.

Реакции гликолиза идут в цитозоле и в хлоропластах. В результате гликолиза из одной молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и 4 молекулы АТФ (рис. 6.1).

Поскольку макроэргическая связь формируется прямо на окисляемом субстрате, такой процесс образования АТФ получил название субстратного фосфорилирования. Две молекулы АТФ покрывают расход на первоначальное активирование субстрата за счет фосфорилирования. Следовательно, накапливаются 2 молекулы АТФ. Кроме того, в ходе гликолиза восстанавливаются 2 молекулы НАД до НАДН, окисление которых в электронтранспортной цепи митохондрий приводит к синтезу 6 молекул АТФ. Итого образуются 8 молекул АТФ. Образовавшиеся 2 молекулы пировиноградной кислоты вступают в аэробную фазу дыхания.

52. Цикл Кребса, химизм, значение, выход энергии атф.

Аэробная фаза дыхания локализована в митохондриях. Пировиноградная кислота окисляется до воды и углекислого газа в дыхательном цикле, получившем название цикла ди- и трикарбоновых кислот или цикла Кребса в честь английского биохимика Г. Кребса, описавшего этот путь (рис 6.2.). В этом цикле окисляется не сама пировиноградная кислота, а ее производное – ацетилкоэнзим А. Он образуется в результате окислительного декарбоксилирования пировиноградной кислоты. Процесс этот состоит из ряда реакций и катализируется сложной мультиферментной системой, состоящей из трех ферментов и пяти коферментов, и названной пируваткарбоксилазой.

1 – мультиэнзимный комплекс окислительного декарбоксилирования пировиноградной кислоты, 2 – цитратсинтаза, 3 – аконитатгидратаза, 4 – изоцитратдегидрогеназа, 5 – мультиэнзимный комплекс окислительного декарбоксилирования α-кетоглутаровой кислоты, 6 – сукцинатдегидрогеназа, 7 – фумаратгидратаза, 8 – малатдегидрогеназа (по В. В. Полевому).

При окислении одной молекулы пировиноградной кислоты образуется 3 молекулы НАДН, 1 молекула НАДФН и 1 молекула ФАДН2, при окислении которых в дыхательной электронтранспортной цепи синтезируется 14 молекул АТФ. Кроме того, 1 молекула АТФ образуется в результате субстратного фосфорилирования.

53. Дыхание – центральное звено обмена веществ и энергии. Использование продуктов дыхания в синтетических процессах.

При дыхании освобождается энергия, необходимая не только для поддержания структурной целостности и существования протоплазмы, но также и для синтеза многочисленных соединений, необходимых для образования новой протоплазмы и структуры растений (ассимиляции). Часть образовавшихся при фотосинтезе углеводов, не окисленная при дыхании или не использованная в ассимиляции, накапливается в плодах, семенах и вегетативных органах в виде крахмала, белка или жиров.

Дыхание может быть определено как окисление пищи (субстрата) в живых клетках, приводящее к освобождению энергии. Это энергия, запасенная в виде химической энергии молекул субстрата. Освободившаяся энергия используется на поддержание структуры протоплазмы (поддерживающее дыхание), на синтетические процессы (ростовое дыхание), на транспорт веществ, на механические процессы (такие, как движение протоплазмы), часть энергии приходится на электрическую энергию, часть рассеивается в виде тепла.

Во всех живых клетках растений дыхание происходит постоянно. В физиологически неактивных структурах, таких, как покоящиеся семена, его интенсивность чрезвычайно низка. Наиболее интенсивно дышат меристематические участки, например, камбий, корни, кончики стебля и очень молодые ткани. Иногда дыхание интенсивно протекает также в созревающих плодах, где много энергии освобождается в виде тепла, не играющего, вероятно, никакой полезной для растения роли. Срок хранения плодов и семян может быть значительно продлен при хранении их в условиях, поддерживающих низкий уровень дыхания. Однако снижение дыхательной активности в растущих тканях при пониженной температуре или низкой концентрации кислорода нежелательно, поскольку оно уменьшает скорость роста.

Для выживания необходима некоторая минимальная интенсивность дыхания, а для роста более высокая интенсивность, но часто интенсивность дыхания поднимается даже выше необходимого уровня. Это приводит к непродуктивному потреблению питательных веществ, которые могли бы быть использованы при ассимиляции для образования новых тканей или аккумулированы в запасающих органах. Большая доля питательных веществ, образованных деревьями, используется на дыхание нефотосинтезирующих тканей.

В освобождении энергии, заключенной в органических веществах, состоит главное значение дыхания. По существу, при дыхании освобождается солнечная энергия, которую растение использовало в процессе фотосинтеза на образование органических веществ и таким путем запасло ее.

В процессе дыхания окисление сложных органических веществ до углекислого газа и воды происходит постепенно и энергия освобождается небольшими порциями. Если бы энергия освобождалась вся сразу, тогда клетка сгорела бы.

Растительная клетка использует в качестве дыхательного материала самые разнообразные органические вещества, окислительно-восстановительные превращения которых осуществляются с участием весьма сложного комплекса каталитических механизмов: ферментов, активирующих водород; ферментов, активирующих кислород; ферментов, выполняющих роль промежуточных медиаторов (или переносчиков электронов); и вспомогательных ферментов. Таким образом, сложная цепь сопряженных окислительно-восстановительных процессов представляет собой многозвенное строго отрегулированное сочетание ферментативных систем различной природы, осуществляющих различные функции. Большой набор ферментативных систем, участвующих в акте дыхания, обеспечивает широкие адаптивные возможности растительного организма к постоянно меняющимся условиям внешней среды (температура, влажность, освещенность, концентрация кислорода и др.). С помощью каталитических систем дыхания запасы свободной энергии, содержащиеся в молекуле органического вещества, являющегося дыхательным субстратом, превращаются в мобильную форму, легко используемую в любых процессах, связанных с потреблением энергии. Образующиеся в ходе последнего органические соединении и являются практически единственным источником пластических и энергетических ресурсов, за счет которых и обеспечивается существование всего живого населения земного шара. Практически вся масса ассимилятов, создаваемых в процессе фотосинтеза, принадлежит к соединениям неспецифических, а в химическом отношении инертным. То же относится и к содержащейся в этих соединениях химической энергии, которая также не может быть непосредственно использована для осуществления какого-либо из видов клеточной «работы».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]