Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_Algebra.docx
Скачиваний:
1
Добавлен:
26.04.2019
Размер:
929.65 Кб
Скачать

Вопрос 43 (44) Теорема Лагра́нжа в теории групп гласит:

Пусть группа G конечна и H — её подгруппа. Тогда порядок G равен порядку H, умноженному на количество её левых или правых классов смежности (индекс).

Следствия

Количество правых и левых смежных классов любой подгруппы H в G одинаково и называется индексом подгруппы H в G (обозначается [G:H]).

Порядок любой подгруппы конечной группы G делит порядок G.

Из того, что порядок элемента группы равен порядку циклической подгруппы, образованной этим элементом, следует, что порядок любого элемента конечной группы Gделит порядок G. Это следствие обобщает теорему Эйлера и малую теорему Ферма в теории чисел.

Группа порядка p, где p — простое число, циклична. (Поскольку порядок элемента, отличного от единицы, не может быть равен 1, все элементы, кроме единицы, имеют порядок p, и значит, каждый из них порождает группу.)

История

Важный частный случай этой теоремы был доказан Лагранжем в 1771 году в связи с исследованиями разрешимости алгебраических уравнений в радикалах. Это было задолго до определения группы. Современная формулировка включает первоначальную формулировку теоремы Лагранжа как пример.

Вопрос 44 (45) Коши теорема о разложении аналитической функции в степенной ряд. Пусть f (z) — функция, однозначная и аналитическая в области Gz0  произвольная (конечная) точка области G и r — расстояние от z0 до границы этой области. Тогда существует степенной ряд, расположенный по степеням z — z0, сходящийся в круге |z—z0< r и представляющий в этом круге функцию f (z):

 .

Граница области G может сводиться к бесконечно удалённой точке; в этом случае r следует считать равным бесконечности. Эта теорема была установлена О. Коши (1831), исходившим из представления аналитической функции в виде Коши интеграла.

Правило Бернулли-Лопита́ля — метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и  . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных. Точная формулировка

Условия:

 или  ;

 и   дифференцируемы в проколотой окрестности  ;

 в проколотой окрестности  ;

существует  ,

тогда существует  .

Пределы также могут быть односторонними.

История

Способ раскрытия такого рода неопределённостей был опубликован в учебнике «Analyse des Infiniment Petits» 1696 года за авторством Гийома Лопиталя. Метод был сообщён Лопиталю в письме его первооткрывателем Иоганном Бернулли.[2]

Доказательство

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (то есть неопределённость вида  ).

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a, мы можем непрерывным образом их доопределить в этой точке: пусть f(a) = g(a) = 0. Возьмём некоторый x из рассматриваемой полуокрестности и применим к отрезку   теорему Коши. По этой теореме получим:

,

но f(a) = g(a) = 0, поэтому  .

Дальше, записав определение предела отношения производных и обозначив последний через A, из полученного равенства выводим:

 для конечного предела и

 для бесконечного,

что является определением предела отношения функций.

[править]Отношение бесконечно больших

Докажем теорему для неопределённостей вида  .

Пусть, для начала, предел отношения производных конечен и равен A. Тогда, при стремлении x к a справа, это отношение можно записать как A + α, где α — O(1). Запишем это условие:

.

Зафиксируем t из отрезка   и применим теорему Коши ко всем x из отрезка  :

, что можно привести к следующему виду:

.

Для x, достаточно близких к a, выражение имеет смысл; предел первого множителя правой части равен единице (так как f(t) и g(t) — константы, а f(x) и g(x) стремятся к бесконечности). Значит, этот множитель равен 1 + β, где β — бесконечно малая функция при стремлении x к a справа. Выпишем определение этого факта, используя то же значение ε, что и в определении для α:

.

Получили, что отношение функций представимо в виде (1 + β)(A + α), и  . По любому данному ε можно найти такое ε1, чтобы модуль разности отношения функций и A был меньше ε, значит, предел отношения функций действительно равен A.

Если же предел A бесконечен (допустим, он равен плюс бесконечности), то

.

В определении β будем брать  ; первый множитель правой части будет больше 1/2 при x, достаточно близких к a, а тогда  .

Для других баз доказательства аналогичны приведённым.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]