Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.теор.введение.doc
Скачиваний:
50
Добавлен:
25.04.2019
Размер:
1.56 Mб
Скачать

3.1. Электроотрицательность элементов

  • Электpоoтрицательность () - способность атома удерживать внешние (валентные) электроны. Она определяется степенью притяжения этих электронов к положительно заряженному ядру.

Это свойство проявляется в химических связях как смещение электронов связи в сторону более электроотрицательного атома.

Электpоотрицательность атомов, участвующих в образовании химической связи, - один из главных факторов, который определяет не только ТИП, но и СВОЙСТВА этой связи, и тем самым влияет на характер взаимодействия между атомами при протекании химической реакции.

В шкале относительных электроотрицательностей элементов Л.Полинга (рассчитанных на основании зависимости энергий связей от различий в электроотрицательностях  связываемых атомов) металлы и элементы-органогены располагаются в следующий ряд:

Элемент

K

Na

Li

Mg

H

S

C

J

Br

Cl

N

O

F

0.8

0.9

1.0

1.2

2.1

2.5

2.5

2.5

2.8

3.0

3.0

3.5

4.0

Элeктроотрицательность элементов растет слева направо вдоль периода и снизу вверх в группах Периодической системы Д.И. Менделеева.

3.2. Основные типы химических связей

Основными типами химических связей, отличающихся друг от друга электронным строением и механизмом взаимодействия связываемых атомов, являются ковалентная и ионная связи. Тип связи в значительной степени определяется разностью электроотрицательностей () элементов, участвующих в ее образовании:

 =  А  В,

где  А и  В - электроотрицательности атомов А и В.

3.2.1. Ионная связь

  • Химическая связь, основанная на электростатическом притяжении ионов, называется ионной связью

Такая связь возникает при большой разнице в электроотрицательностях связываемых атомов ( > 2 ), когда менее электроотрицательный атом почти полностью отдает свои валентные электроны и превращается в катион, а другой, более электроотрицательный атом, эти электроны присоединяет и становится анионом.

Например, в хлориде натрия NaCl разность электроотрицательностей атомов равна:

 = 3.0(Cl) - 0.9(Na) = 2.1.

Атом Na (1 электрон на внешнем уровне) и атом Cl (7 внешних электронов) превращаются в ионы Na+ и Cl- с завершенными внешними электронными оболочками (по 8 электронов), между которыми возникает электростатическое притяжение, т.е. ионная связь.

Иoннaя связь не имеет пространственной направленности, так как каждый ион связан с определенным числом противоионов. Поэтому ионно-связанные соединения не имеют молекулярного строения и представляют собой твердые вещества, образующие ионные кристаллические решетки, с высокими температурами плавления и кипения, они высокополярны, часто солеобразны, в водных растворах электропроводны. Соединений с чисто ионными связями практически не существует.

В органических соединениях ионные связи встречаются довольно редко, т.к. атом углерода не склонен ни терять, ни приобретать электроны с образованием ионов.