Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
а.г коллоквиум 11.doc
Скачиваний:
28
Добавлен:
15.11.2018
Размер:
2.39 Mб
Скачать

27. Ориентация пространства.

Пусть базисные векторы в пространстве V3 имеют общее начало и упорядочены, т.е. указано какой вектор считается первым, какой – вторым и какой – третьим. Например, в базисе век-торы упорядочены согласно индек-сации.

Для того чтобы ориентировать пространство, необходимо задать какой-нибудь базис и объявить его положительным .

Можно показать, что множество всех базисов пространства распадается на два класса, т.е. на два непересекающихся подмножества.

а) все базисы, принадлежащие одному подмножеству (классу), имеют одинаковую ориентацию (одноименные базисы) ;

б) всякие два базиса, принадлежащие различным подмножествам (кла-ссами), имеют противоположную ориентацию, (разноименные базисы) .

Если один из двух классов базисов пространства объявлен положитель-ным , а другой – отрицательным, то говорят, что это пространство ориенти-ровано .

Часто при ориентации пространства одни базисы называют правыми , а другие – левыми .

Согласно критерию наблюдателя базис называют правым , если при наблюдении с конца третьего вектора кратчайший поворот пер-вого вектора ко второму вектору осуществляется против часовой стрелки (рис. 1.8, а).

0 0

а) б)

Рис. 1.8. Правый базис (а) и левый базис (б)

Обычно положительным базисом объявляется правый базис пространства

Правый (левый) базис пространства может быть определен и с помощью правила «правого» («левого») винта или буравчика.

По аналогии с этим вводится понятие правой и левой тройки некомпла-нарных векторов , которые должны быть упорядочены (рис.1.8).

Таким образом, в общем случае две упорядоченные тройки некомпла-нарных векторов имеют одинаковую ориентацию (одноименны) в пространстве V3 если они обе правые или обе левые, и – противоположную ориентацию (разноименны), если одна из них правая, а другая левая.

Аналогично поступают и в случае пространства V2 (плоскости).

28. Разложение вектора по базису. Этот вопрос для простоты рассуждений рассмотрим на примере трех-мерного векторного пространства R3 .

Пусть - линейно независимые векторы (базис) пространства R3 а - произвольный вектор этого пространства.

Теорема. Любой вектор пространства R3 однозначно представим в виде линейной комбинации трех линейно независимых век-торов этого пространства, т.е.

(3)

Представление произвольного вектора в виде линейной комбинации ба-зисных векторов называется разложением этого вектора по базису.

Например, выражение означает, что вектор разложен по базису .

29. Координаты вектора. Из рассмотренного выше следует, что фиксированный базис позволяет сопоставить каждому вектору пространства R 3 упорядоченную тройку чисел (а пространству R 2 – плоскости, - упорядоченную двойку чисел), которые являются коэффициентами разложения этого вектора по векторам базиса. Наоборот, каждой упорядоченной тройке чисел при помощи бази-са сопоставляется единственный вектор пространства, если составим линейную комбинацию (аналогично и для пространства R 2 и вообще R n ).

Определение. Если - базис и вектор , то числа называются координатами вектора в данном базисе.

Обозначение : или, в конкретном случае .

Вполне очевидно, что если в пространстве R выбрать другой базис, то тот же вектор будет иметь другие координаты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]