Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задачи физика.docx
Скачиваний:
160
Добавлен:
27.02.2016
Размер:
1.6 Mб
Скачать

3.1.2. Поляризация света

Интенсивность света численно равна энергии, переносимой электро-магнитными волнами за единицу времени через единичную площадку, перпендикулярную направлению распространения этих волн. Интенсивность электромагнитной волны пропорциональна квадрату амплитуды вектора напряженности электрического поля (амплитуды светового вектора):~.

Интенсивность света, являющегося совокупностью электромагнитных волн:

~,

где и- интенсивность и амплитуда вектора напряженности электрического поля- той электромагнитной волны;и- проекции вектора напряженности электрического поля- той электромагнитной волны на взаимно перпендикулярные оси координати;- количество электромагнитных волн.

В естественном свете:

~,

где - интенсивность естественного света.

После прохождения естественного света через первый поляризатор интенсивность полученного плоскополяризованного света:

, где - интенсивность естественного света.

По закону Малюса интенсивность плоскополяризованного света, прошедшего через второй поляризатор (анализатор):

,

где - угол между оптическими осями первого и второго поляризаторов.

С учетом отражения и поглощения света в поляризаторах:

,

где и- коэффициенты, соответственно, отражения и поглощения света в обоих поляризаторах.

Степень поляризации света: ,

где и- максимальная и минимальная интенсивности света, пропускаемого поляризатором (анализатором).

Согласно закону Брюстера после падения естественного света на границу раздела двух сред под углом отраженный луч является плоскополяри-зованным и перпендикулярным преломленному лучу. Из закона преломления следует, что:,

где - относительный показатель преломления сред.

Контрольное задание №5 Вариант 1

1. Пучок солнечного света, пройдя через светофильтр и узкую щель в непрозрачной преграде, падал на вторую преграду с двумя узкими щелями, находящимися на расстоянии d=1 мм друг от друга. За преградой на расстоянии =1 м располагался экран, на котором наблюдались интерференционные полосы. Ширина полосы Δх оказалась равной: а) 0,65 мм для красного света; б) 0,45 мм для синего света. Чему равна длина световой волны λ0 красного и синего света?

2. На тонкую мыльную пленку (n=1,33) под углом 300 падает монохроматический свет с длиной волны 0,6 мкм. Найти угол между поверхностями пленки, если расстояние между интерференционными полосами в отраженном свете равно 4 мм.

3. Радиус кривизны плоско-выпуклой линзы 4 м. Чему равна длина волны падающего света, если радиус пятого светлого кольца в отраженном свете равен 3,6 мин?

4. Свет от монохроматического источника (длина волны 600 нм) падает нормально на непрозрачный экран с круглым отверстием. Определить, сколько зон Френеля укладывается в отверстии, если диаметр отверстия равен 3 мм. Дифракционная картина наблюдается на расстоянии 2 м от экрана с отверстием.

5. На щель шириной 0,1 мм нормально падает параллельный пучок света от монохромного источника (=0,6 мкм). Определить ширину центрального максимума на экране, удаленном от щели на расстоянии 1 м.

6. Определить длину волны монохроматического света, падающего нормально на решетку с периодом 2,2 мкм, если угол между максимумами первого и второго порядка 150.

7. Определите степень поляризации частично поляризованного света, если амплитуда светового вектора, соответствующая максимальной интенсивности света, в 3 раза больше амплитуды, соответствующей его минимальной интенсивности.

8. При падении естественного света на некоторый поляризатор проходит 30% светового потока, а через два таких поляризатора 13,5%. Найти угол  между плоскостями пропускания этих поляризаторов.

9. Пластинка кварца толщиной 3 мм (удельное вращение 15 град/мин), вырезанная перпендикулярно оптической оси, помещена между двумя скрещенными николями. Пренебрегая в николях потерями света, определить, во сколько раз уменьшится интенсивность света, прошедшего эту систему.