Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
panteleev_v_l_teoriya_figury_zemli.pdf
Скачиваний:
104
Добавлен:
04.06.2015
Размер:
3.91 Mб
Скачать

пунктов задают геодезическими координатами , соответственно, широтой, долготой и высотой. Фундаментально задачей является определение центра общего земного эллипсоида относительно центра масс.

В доспутниковую эпоху геодезические работы вполне удовлетворяла привязка к эллипсоиду, аппроксимирующему исследуемую территорию. Советский геодезист Ф.М.Красовский получил параметры эллипсоида для Советского Союза с началом отсчета высот по Кронштадскому футштоку. Сжатие эллипсоида Красовского равно 1:298,3, Эта величина значительно отличалась от сжатия общего земного эллипсоида принятого в то время и полученного по гравиметрическим данным. Авторы давали разные оценки сжатия от 1:296,6 до 1:297,4. Первое же определение сжатия по спутниковым данным дало величину, практически совпадающую со сжатием эллипсоида Красовского. Точность определения существенно возросла. Генеральная Ассамблея МАС в 1976 г для сжатия Земли утвердила значение

1:298,2570.

Спутниковые альтиметрические исследования дали прямые измерения топографии

водной глади поверхности океанов, которая совпадает с геоидом с точностью м. Сами альтиметрические наблюдения достигли точности нескольких сантиметров. Появилась необходимость с такой же точностью строить и теорию движения спутников и определять поверхность геоида. Классическое линейное приближение с точностью до первой степени сжатия стало неприемлемым. Если радиус Земли равен R, то малыми величинами мы должны считать линейные величины км. Малыми величинами второго порядка будут м, а третьего порядка --

см. Отсюда следует, что теория движения спутников должна обеспечивать сантиметровую точность, а современная теория фигуры Земли должна строиться так, чтобы обеспечить точность до малых третьего порядка. К сожалению, таких точностей еще не получено.

Лекция 2. Геодезические системы координат

2.1 Декартовы системы координат

2.2 Сферическая система координат

2.3 Геодезическая система координат

2.4 Эллипсоидальная система координат

Сферическая система. Широта долгота и радиус-вектор. Система координат, построенная на эллипсоиде. Геодезические координаты: широта, долгота и высота. Связь между сферической,геодезической и декартовой системами координат.

Геодезические задачи решают на плоскости, если размеры площади невелики. Если исследуемая часть поверхности занимает несколько градусов широты или долготы, то необходимо учитывать и кривизну поверхности. В этом случае часто подходит и шар. Для решения глобальных задач, в том числе и задач по космической геодезии в качестве тела отсчета берут эллипсоид вращения. В частности на эллипсоиде решают следующие задачи:

--Уточнение формы и размеров общего земного эллипсоида (ОЗЭ).

--Перенос направлений и расстояний с физической поверхности на эллипсоид.

--Определение координат точек на поверхности референц-эллипсоида.

--Определение расстояний между точками с заданными координатами.

--Уточнение координат по мере уточнения элементов эллипсоида.

2.1 Декартовы системы координат

Введем две прямоугольные системы координат: локальную и глобальную.

Начало системы отсчета (точка Р) для локальной прямоугольной системы координат выберем в точке наблюдения, лежащей на поверхности эллипсоида. Ось РХ

направим на Север, ось РУ? на Восток, а ось

по нормали к

поверхности

эллипсоида вниз (по внутренней нормали).

В этой системе

координат

"горизонтальная" плоскость ХРУ не совпадает с плоскостью астрономического горизонта.

Глобальную декартову геодезическую систему координат Oxyz строят так: начало отсчета совмещают с центром ОЗЭ (не путать с центром масс Земли!), плоскость xOy -- c плоскостью экватора. Ось Ox совмещают с линией пересечения плоскости нулевого меридиана и плоскости экватора. Ось Oy пересекает экватор в точке с долготой 90°. Ось Oz совпадает с осью вращения ОЗЭ. Эта ось не обязательно совпадает с осью вращения Земли. Для трехосного ОЗЭ начало координат берут в центре масс Земли, а оси -- совпадающими с главными осями

инерции. В этом случае плоскость xOy, вообще говоря, не будет лежать в плоскости экватора.

2.2 Сферическая система координат

Телом отсчета для сферической системы координат является сфера с радиусом . Начало этой системы координат совмещают с центром сферы. Координатами являются геоцентрическая широта , долгота и радиус-вектор . Широтой называется угол между радиусом-вектором и плоскостью экватора. Долгота есть угол между плоскостью, проходящей через заданную точку и осью вращения (плоскость меридиана) и плоскостью меридиана, принятого в качестве нулевого. Связь между сферической системой и глобальной декартовой определяется формулами

(2.1)

В том случае, когда широта определяется как угол между плоскостью экватора и отвесной линией, сферическая система координат называется астрономической.

Широта и долгота, определенные в этой системе мы будем обозначать через и .

2.3 Геодезическая система координат

С геодезической системой координат связывают понятия геодезической широты, долготы и высоты. Геодезическая широта В есть угол, под которым пересекается нормаль к поверхности эллипсоида с плоскостью экватора. Долгота - - двугранный угол между плоскостью нулевого меридиана и плоскостью меридиана, проходящего через заданную точку.

Геодезические широта и долгота отличаются от соответствующих астрономических координат, связанных с отвесной линией, так как отвесная линия не совпадает с нормалью к эллипсоиду. Отклонение отвесной линии можно спроецировать на две плоскости: плоскость меридиана и плоскость первого вертикала. Нетрудно понять,

что обе эти составляющие можно определить через разности между астрономическими и геодезическими координатами

(2.2)

Отклонения отвесной линии составляют, как правило, первые несколько секунд дуги. Заметим, что геодезическая и геоцентрическая долготы совпадают. Обе они определены как двугранный угол между плоскостью нулевого меридиана и плоскостью, содержащей ось вращения и заданную точку. Геоцентрическая же широта отличается от геодезической.

Рассмотрим точку , лежащую вне ОЗЭ. Опустим из этой точки перпендикуляр на поверхность эллипсоида и продолжим его до пересечения с экваториальной плоскостью (рис. 2). Проекцию точки на поверхность эллипсоида обозначим через

Тогда отрезок PQ есть геодезическая высота точки . Угол, под которым упомянутый перпендикуляр пересекает плоскость экватора, есть геодезическая

широта . Она относится как к точке , так и к точке . Геоцентрические широты этих двух точек, как видно из рисунка, различаются. Геоцентрическая широта точки

угол между радиус-вектором этой точки и плоскостью экватора.

 

 

Рис. 2.

 

 

 

Установим связь между координатами точки ,

сжатием эллипсоида

и широтами

и . Поскольку точка

лежит на поверхности эллипсоида, то ее прямоугольные

координаты

подчиняются

уравнению

эллипсоида

вращения:

 

. Рассмотрим сечение

.

Тогда, как

легко видеть,

. Чтобы определить

, нужно найти угловой коэффициент нормали в

точке . Уравнение нормали к кривой

 

в точке

имеет вид

 

 

 

 

 

(2.3)

У нас

, поэтому

,

,

Следовательно,

Определим отличие геоцентрической широты от геодезической . Имеем очевидные равенства

(2.4)

Второй эксцентриситет эллипса, как мы знаем, определяется следующим образом

, поэтому

Для Земли второй эксцентриситет мал, поэтому, пренебрегая малыми второго порядка относительно сжатия, получим . Можно также считать, что

Учитывая сказанное, получим

Наибольшее отличие геодезической широты от геоцентрической достигается на

широте 45° и составляет .

Связь глобальных декартовых координат с геоцентрическими определяется формулами (2.1). Определим теперь формулы, связывающие декартовы координаты с геодезическими. Это означает, что бы должны определить координаты точки через параметры эллипсоида и геодезические широту и долготу.

Поскольку , для определения координат , , точки достаточно, для начала, определить только координаты и , то есть все рассуждения проводить

только для сечения

. Обратимся к рис. 3.

Рис. 3.

Определим прямоугольные координаты точки , расположенной на высоте Н над поверхностью эллипсоида. Сначала определим координаты проекции точки на

поверхность эллипсоида (точка ). Ее координаты в сечении Охz равны

Индексом "0" мы отметили принадлежность координат к точке, лежащей на поверхности эллипсоида. Как мы видели

поэтому

Остается определить радиус-вектор точки . Воспользуемся уравнением эллипса и выполним необходимые преобразования.

(2.5)

Выразим и через и , для чего воспользуемся приведенными

выше формулами. Определим радиус-вектор точки

следовательно,

(2.6)

Обозначим

(2.7)

Теперь

(2.8)

Для произвольного сечения, проходящего через ось вращения

, будем иметь

(2.9)

Теперь поднимем точку на высоту Н и совместим ее с точкой . Прямоугольные координаты изменятся на

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]