Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга Николаенко.doc
Скачиваний:
260
Добавлен:
31.05.2015
Размер:
32.83 Mб
Скачать

17.4. Частный случай плоского напряженного состояния – чистый сдвиг. Закон Гука при сдвиге.

Рассмотрим частный случай плоского напряженного состояния, для которого отличные от нуля главные напряжения равны по модулю и противоположны по знаку (рис. 17.8).

Такое напряженное состояние носит названиечистого сдвига. Максимальное главное напряжение следует обозначить , минимальное ; по условию, ; промежуточное главное напряжение = 0.

Чистым сдвигом называют такое плоское напряженное состоя­ние, при котором в окрестности данной точки можно выделить элемент таким образом, чтобы на четы­рех его гранях были только равные между собой касательные напряжения.

В качестве примера, иллюст­рирующего возникновение чистого сдвига, рассмотрим кручение тонко­стенной трубы (рис. 17.9 а). Из условия равновесия отсеченной части трубы, изображенной отдельно на рис. 17.9 б, следует, что в поперечном сечении (любом) возни­кает лишь один внутренний силовой фактор – крутящий момент , численно равный

внешнему моменту М. В поперечном сечении трубы возникают касательные напряжения ().

Деформация сдвига. Изобразим элемент, выделенный площадками, на которых возникают только касательные напряжения. Учитывая, что нас интересуют деформации элемента, а не его перемещения как твер­дого тела, будем считать одну из граней неподвижной. Мерой деформации сдвига служит изменение первоначального прямого угла между гранями элемента, называемое углом сдвига и обозначаемое . Угол сдвига, выражается в радианах (рис. 17.10).

Между углом сдвига и соответствующим касательным напряжением существует прямая пропорциональность – закон Гука при сдвиге.

(17.11)

Здесь Gупругая постоянная материала, характеризующая его жесткость при деформации сдвига и называемая модулем сдвига или модулем упругости 2-го рода. Размерность модуля сдвига та же, что и напряжения.

(17.12)

Глава 18. Механические свойства конструкционных материалов

18.1. Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжении

Основные механические характеристики.

1. Прочность – способность материала, не разрушаясь, воспринимать внешние механические воздействия.

2. Пластичность – способность материала давать значительные остаточные деформации, не разрушаясь.

3. Упругость – способность материала восстанавливать после снятия нагрузок свои первоначальные формы и размеры.

4. Твердость – способность материала сопротивляться проникновению в него другого тела, практически не получающего остаточных деформаций.

По характеру нагружения различают испытания статические, динамические и испытания на усталость (при переменных напряжениях).

По виду деформации различают испытания на растяжение, сжатие, срез, кручение, изгиб. Реже проводят испытания при сложном нагружении, например на совместное действие изгиба и кручения.

Механические испытания проводят на образцах, формы и размеры которых установлены ГОСТами или техническими условиями (рис. 18.1).

Статические испытания на растяжение

Наиболее распространенным является испытание на растяжение статической нагрузкой.

Испытания проводят на разрывных или универсальных машинах смеханическим или гидравлическим силообразованием.

Машина снабжена диаграммным аппаратом, который в процессе испытания вычерчивает график зависимости между силойF, растягивающей образец и соответствующим удлинением (рис. 18.2).

Для получения механических характеристик материала (т.е. для того, чтобы исключить влияние абсолютных размеров образца) эту диаграмму перестраивают: все ординаты делят на начальную площадь поперечного сечения А0, а все абсциссы – на начальную расчетную длину l0. В результате получаю так называемую условную диаграмму растяжения (рис. 18.3).

предел пропорцио­нальности – наибольшее напряже­ние, до достижения которого справедлив закон Гука;

предел упругости – наибольшее напряжение, до достижения которого в образце не возникает остаточных деформаций;

предел текучести – напряжение, при котором происходит рост пластических деформаций образца при практически постоянной нагрузке;

предел прочности (или временное сопротивление) – условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом до разрушения.