Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга Николаенко.doc
Скачиваний:
260
Добавлен:
31.05.2015
Размер:
32.83 Mб
Скачать

Основные законы трения

1. Сила трения действует в касательной плоскости к поверхностям соприкасающихся тел и при движении направлена против относительного скольжения тела.

2. Статическая сила трения пропорциональна нормальной реакции,

3. Статическая сила трения не зависит от размеров трущихся поверхностей.

4. Статический коэффициент трения () зависит от материала соприкасающихся тел, физического состояния (влажности, температуры, степени загрязнения и т.д.) и качества обработки. (Законы трения относятся к числу не очень точных. Обычно наблюдаются от них значительные отклонения. Например, при увеличении продолжительности неподвижного контакта соприкасающихся тел статический коэффициент трения возрастает, так как в месте контакта постепенно происходит пластическое изменение

поверхностей обоих тел и площади их соприкосновения увеличиваются. Следовательно, размеры трущихся поверхностей влияют на статический коэффициент трения, а значит и на силу трения).

После начала скольжения тела коэффициент трения несколько уменьшается и принимает значение динамического коэффициента трения f

Следовательно,

где – сила трения скольжения.

Глава 5. Пространственная система сил

5.1. Сложение пространственной системы сходящихся сил. Условие равновесия

Система сил, линии действия которых расположены как угодно в пространстве, называется пространственной.

Если к приложенным к точке А силам и . добавить силу , не лежащую в плоскости П действия двух первых сил, то получим простейшую (в количественном отношении) пространственную систему сходящихся сил. Определим равнодействующую этих сил. Сначала построим параллелограмм АВЕС на силах и. Его диагональ

.

Сложим АЕ с силой и построим параллелограмм AEKD. Его диагональ

.

Это векторное равенство выражает правило параллелепипеда при сложении приложенных к точке трех сил, не лежащих в одной плоскости.

Параллелограмм АВЕС образует одну из граней параллелепипеда, в котором параллелограмм AEKD является диагональным сечением, а заданные силы ,иребрами одного из его трехгранных углов. Таким образом, равнодействующая пространственной системы трех сил, сходящихся в одной точке, приложена в той же точке и равна по модулю и направлению диагонали параллелепипеда, ребра которого равны и параллельны заданным силам.

т.е. модуль равнодействующей трех сходящихся сил, расположенных в пространстве перпендикулярно друг другу, равен корню квадратному из суммы квадратов модулей этих сил.

Равнодействующая любого числа сходящихся сил, расположенных в пространстве, равна замыкающей стороне многоугольника, стороны которого равны и параллельны заданным силам (правило силового многоугольника).

Аналитическое условие равновесия пространственной системы сходящихся сил выражается тремя уравнениями:

т.е. для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на каждую из трех осей координат были равны нулю.

5.2. Момент силы относительно оси

Обозначив момент силы относительно осей ,и , можем записать:

где , и модули проекций сил на плоскости, перпендикулярные той оси, относительно которой определяется момент; l плечи, равные длинам

перпендикуляров от точки пересечения оси с плоскостью до проекции или ее продолжения; знак «плюс» или «минус» ставится в зависимости от того, в какую сторону поворачивается плечо l вектором проекции, если смотреть на плоскость проекции со стороны положительного направления оси; при стремлении вектора проекции повернуть плечо против хода часовой стрелки момент условимся считать положительным, и наоборот.

Следовательно, моментом силы относительно оси называется алгебраическая (скалярная) величина, равная моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.

Предыдущий рисунок иллюстрирует последовательность определения момента силы относительно оси Z. Если задана сила и выбрана (или задана) ось, то: а) перпендикулярно оси выбирают плоскость (плоскость ХОУ); б) силу F проецируют на эту плоскость и определяют модуль этой проекции; в) из точки 0 пересечения оси с плоскостью опускают перпендикуляр ОС к проекции и определяют плечо l = ОС; г) глядя на плоскость ХОУ со стороны положительного направления оси Z (т.е. в данном случае сверху), видим, что ОС поворачивается вектором против хода стрелки ча­сов, значит

Момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости: а) сила пересекает ось (в этом случае l = 0);

б) сила параллельна оси ();

в) сила действует вдоль оси (l=0 и ).