Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
часть_1_2012.doc
Скачиваний:
603
Добавлен:
16.05.2015
Размер:
14.55 Mб
Скачать

Глава 6. Мейоз как процесс формирования гаплоидных гамет. Гаметогенез. Размножение организмов как механизм, обеспечивающий смену поколений. Основные способы размножения Мейоз

Мейоз – это вид деления клеток, при котором из одной диплоидной клетки образуются 4 гаплоидные (рис. 6.1.). Мейоз включает два деления: 1 - редукционное и 2 - эквационное (уравнительное). Мейоз состоит из ряда фаз. Предшествует мейозу интерфаза, в процессе которой происходит синтез ДНК— редупликация хромосом.

Редукционное деление начинается с профазы I, которая принципиально отличается от профазы митоза. Профаза I состоит из ряда стадий: лептотена, зиготена, пахитена, диплотена, диакинез.

В стадии лептотены (тонких нитей) уже хорошо видны отдельные нити очень тонких (слабо спирализованных) и длинных (в 2—5 раз длиннее метафазных) хромосом. Хромосомы в это время состоят из двух хроматид, соединенных общим участком — центромерой. Это говорит о том, что удвоение хромосом, их редупликация, в основном произошла в интерфазе, предшествующей мейозу.

На стадии зиготены (стадия конъюгирующих нитей) хромосомы, одинаковые по размеру и морфологии, т. е. гомологичные, притягиваются друг к другу— конъюгируют. Они соединяются друг с другом наподобие застежки «молния». Такое объединение хромосом-гомологов осуществляется благодаря присущей только мейозу уникальной структуре – синаптонемальному комплексу. Синаптонемальный комплекс обеспечивает тесный контакт между гомологичными сегментами хроматид. Это важное генетическое событие, поскольку конъюгация делает возможным обмен участками между несестринскими хроматидами гомологичных хромосом, приводя к качественному изменению внутренней генетической структуры хромосом. Этот обмен участками между хроматидами гомологичных хромосом получил название «кроссинговер». Каждая пара конъюгирующих гомологичных хромосом образует бивалент. Бивалент, таким образом, состоит из четырех хроматид, поэтому бивалент называют тетрадой.

В следующей стадии—пахитене (стадия толстых нитей)—происходит утолщение и укорочение хромосом, главным образом за счет спирализации и конденсации. Хроматиды одной хромосомы—сестринские - хорошо видны. В этой стадии хорошо различима продольная дифференциация хромосом, так что можно идентифицировать каждую хромосому.

В следующей стадии—диплотене (стадия двойных нитей) гомологичные хромосомы начинают отталкиваться. Процесс отталкивания начинается в области центромеры и распространяется к концам. В это время

Рис. 6.1. Схема мейотического деления клетки.

хорошо видно, что бивалент состоит из двух хромосом (откуда и название стадии «двойные нити»).

В биваленте обособлены четыре хроматиды, поэтому бивалент называют тетрадой. В это же время становится видно, что тела двух гомологичных хромосом переплетаются. Фигуры перекрещенных хромосом напоминают греческую букву «хи» (χ), поэтому места перекреста назвали хиазмами. Наличие хиазм связано с произошедшим кроссинговером. По мере прохождения этой стадии хромосомы как бы раскручиваются, происходит перемещение хиазм от центра к концам хромосом (терминализация хиазм). Это обеспечивает возможность движения хромосом к полюсам в анафазе.

На стадии диакинеза (стадия движения вдаль или стадия расхождения нитей) биваленты, которые заполняли весь объем ядра,

начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядра и ядрышек, а также окончательное формирование веретена завершают профазу I.

В метафазе I биваленты прикреплены в области центромер к нитям веретена, причем центромеры гомологичных хромосом располагаются на противоположных сторонах экваториальной плоскости. Гомологичные хромосомы связаны друг с другом переместившимися к концам хромосом хиазмами. Число бивалентов вдвое меньше, чем число хромосом в соматической клетке организма, т. е. равно гаплоидному числу.

В анафазе I к полюсам отходят гомологичные хромосомы из каждого бивалента, т. е. число хромосом у каждого полюса уменьшается вдвое. Центромеры не делятся. В этот редуцированный гаплоидный набор попадает обязательно по одной гомологичной хромосоме из каждого бивалента. Происходит независимая комбинация гомологичных хромосом (отцовские b материнские). В этом принципиальное отличие мейоза от митоза.

Телофаза I очень короткая, в процессе ее идет формирование новых ядер. Хромосомы деконденсируются и деспирализуются. Так заканчивается редукционное деление.

Цитокинез у многих организмов происходит не сразу после деления ядер, так что в одной клетке лежат два ядра более мелких, чем исходное.

Затем наступает стадия интеркинеза, которая отличается от интерфазы тем, что в ней не происходит синтеза ДНК и дупликации хромосом. Интеркинез – это промежуточная стадия между редукционным и эквационным делениями мейоза.

Вслед за интеркинезом наступает второе деление мейоза—эквационное. Оно проходит по типу митоза. Эквационное деление состоит из тех же фаз, что и митоз: профаза II, метафаза II (при рассмотрении пластинки с полюса хорошо видно, что число хромосом в клетке гаплоидное, а каждая хромосома состоит из двух хроматид), анафаза II (хроматиды расходятся к полюсам), телофаза II (в каждом ядре—гаплоидное число хромосом, а число ядер в клетке равно четырем). В клетке происходит цитокинез, в результате которого образуются четыре клетки.

Итак, в мейоз Iвступает диплоидная клетка с удвоенным набором хромосом. В результате мейозаIобразуются две гаплоидные клетки с удвоенными хромосомами. В результате мейозаIIобразуются четыре гаплоидные, генетически разнородные клетки с одинарными хромосомами.

Отличия мейоза от митоза (рис.6.2)

  1. Профаза Iделения мейоза в отличие от профазы митоза очень растянута, в ней происходят важные процессы, связанные с конъюгацией гомологичных хромосом и кроссинговером.

  2. Функциональной единицей митоза является хроматида, а мейоза – целая хромосома.

  3. На протяжении двух делений мейоза имеет место только однократное удвоение ДНК.

  4. В итоге митоза образуются клетки с диплоидным набором хромосом и ДНК, а в результате мейоза – с гаплоидным набором хромосом и ДНК.