Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

общ_физиотерапия

.pdf
Скачиваний:
706
Добавлен:
10.05.2015
Размер:
6.49 Mб
Скачать

204

Глава 6

и корково-подкорковом уровнях. Возникающие при общем облучении рефлекторные реакции стимулируют деятельность' 'практически всех систем организма. Происходит активация адаптационно-трофической функции симпатической нервной системы и восстановление нарушенных процессов белкового, углеводного и липидного обмена в организме. При локальном облучении происходит улучшение сократимости миокарда, что существенно уменьшает давление в малом круге кровообраще­ ния. Средневолновое ультрафиолетовое излучение восстана­ вливает мукоцилиарный транспорт в слизистых оболочках тра­ хеи и бронхов, стимулирует гемопоэз, кислотообразующую функцию желудка и выделительную способность почек.

Под действием ультрафиолетового излучения в эритемных дозах продукты фотодеструкции биомолекул инициируют Т- лимфоциты-хелперы (см. рис. 65) и активируют микроциркуляторное русло, что приводит к увеличению гемолимфоперфузии облученных участков тела. Происходящие при этом дегидрата­ ция гидрокси-керамидов и снижение отека поверхностных тка­ ней приводят к уменьшению инфильтрации и подавлению вос­ палительного процесса на экссудативной стадии. Кроме того, за счет кожно-висцеральных рефлексов, данный фактор тормозит начальную фазу воспаления внутренних органов.

Происходящая в начальный период общего средневолнового облучения организма активация огромного механосенсорного поля кожи вызывает интенсивный поток афферентной импульсации в центральную нервную систему, который вызывает растормаживание дифференцировок корковых процессов, ослаб­ ляет центральное внутреннее торможение и делокализует боле­ вую доминанту. Центральный механизм анальгетического дей­ ствия средневолновых ультрафиолетовых лучей дополняется периферическими процессами локального облучения. В период формирования эритемы локальное повышение проницаемости сосудов микроциркуляторного русла и выделение биологически активных веществ в интерстиций приводят к нарастанию периневрального отека, компрессии нервных проводников соматосенсорной системы и уменьшению чувствительности механорецепторов. Возникающий в области облучения претерминальных участков кожных афферентов парабиоз распространяется по всему волокну и может блокировать импульсацию из местного болевого очага. Исходя из этого, ультрафиолетовое облучение зон сегментарно-метамерной иннервации и зон Захарьина-Геда приводит к выраженному уменьшению болевых ощущений в

Фототерапия

205

соответствующих внутренних органах. В годы Великой Отечественной войны в блокадном Ленинграде профессор Г.М.Франк использовал средневолновое ультрафиолетовое из­ лучение для купирования болевого синдрома у раненых и по­ раженных в условиях отсутствия анальгетиков. За научную раз­ работку данного метода облучения он был удостоен Государ­ ственной премии.

Нарастание содержания биологически активных веществ и ряда медиаторов в первые 3-е суток после облучения сменяется компенсаторным увеличением активности эозинофилов и эндотелиоцитов. В результате в крови и тканях нарастает содержа­ ние гистаминазы, простогландиндегидрогеназы и кининазы. Усиливается также активность ацетилхолинзстеразы и фермен­ тов гидролиза тироксина. Указанные процессы приводят к де­ сенсибилизации организма к продуктам фотодеструкции белков и усиливают его защитные иммунобиологические реакции.

Лечебные эффекты: витаминообразующий, трофостимулирующий, иммуномодулирующий (субэритемные дозы), противовоспалительный, анальгетический, десенсибилизи­ рующий (эритемные дозы).

Показания. Острый и подрстрые воспалительные заболева­ ния внутренних органов (особенно дыхательной системы), по­ следствия ранений и травм опорно-двигательного аппарата, заболевания периферической нервной системы вертеброгенной этиологии с выраженным болевым синдромом (радикулиты, плекситы, невралгии, миозиты), заболевания суставов и костей, недостаточность солнечного облучения, вторичная анемия, на­

рушения обмена веществ, рожа.

 

Противопоказания.

Гипертиреоз,

повышенная

чувствительность к ультрафиолетовым лучам, хроническая почечная недостаточность, системная красная волчанка, маля­ рия.

Параметры. Для лечебного воздействия используют средне­

волновое

ультрафиолетовое излучение

=280-320 нм) с интен­

сивностью

до 20

Эритемные

лампы излучают ультра­

фиолетовые лучи в диапазоне 285-380 нм с максимумом 310320 нм.

Искусственные источники средневолновых ультрафиолето­ вых лучей являются интегральными (излучают все области УФизлучения) и селективными (излучают только длинно- и средне­ волновые УФ-лучи).

206

Глава 6

Кинтегральным источникам относятся лампы высокого давления типа ДРТ (дуговые ртутные трубчатые) различной мощности - 100125 Вт (ДРТ-100, ДРТ-2-100, ДРТ-125), 230-250 (ДРТ-230, ДРТ-250-1, ДРТ-250П), 400 Вт (ДРТ-400), 1000 Вт (ДРТ-1000). Лампу ДРТ 230 (250-1) устанавливают в облучателе кварцевом настольном ОКН11М, ртутно-кварцевых облучателях на штативе ОРК-21М и облуча­ теле для групповых локализованных облучений носоглотки (4-х тубусном) УГН-1 (ОН-7). Лампу ДРТ-400 используют в облучателях ультрафиолетовых настольных (ОУН 250 и ОУН 500) и облучателе ультрафиолетовом для носоглотки (ОН 7) со сменными тубусами. Применяют также газоразрядные лампы ДРК-120 в облучателях ультрафиолетовых внутриполостных ОУП 1 (гинекологических) и ОУП 2 (используемых в отоларингологии, офтальмологии и стоматологии). Плотность потока энергии в пределах светового пятна в этих источни­ ках составляет 5 Вт'м .

Кселективным источникам относится также люминесцентная лампа ЛЗ 153, которую применяют в облучателе ультрафиолетовом на шта­ тиве (ОУШ 1), а третью - в большом маячном ультрафиолетовом об­ лучателе (ОМУ). Люминесцентные лампы применяют в облучателе ультрафиолетовом настольном (ОУН 2). Кроме них в облучателях применяют люминесцентные эритемные лампы ЛЭ-15 (мощностью 15 Вт) и ЛЭ-30 (мощностью 30 Вт). Они изготовлены из увиолевого стекла и покрыты изнутри люминофором. Такие лампы в различном количестве используют в облучателях: настенных (типа ОЭ), подвес­ ных с отраженным распределением (ОЭП) и передвижных (ОЭП). Кроме эритемных люминесцентных ламп применяют и дуговые ксеноновые ДКсТБ-2000, которые входят в состав облучателя маячного типа ЭОКс-2000. За рубежом выпускают интегральные лампы SH-30 лампы сочетанного ультрафиолетового и инфракрасного излучения SH-40.

Дозирование лечебных процедур осуществляют фотометрическим, фотохимическим и биологическим методами. Первые два из них осно­ ваны на определении основных характеристик потока излучения, а третий - на биологической реакции больного. В практике физиоте­ рапии обычно используют биологический метод И.Ф.Горбачева- Р. Данфельда, основанный на свойстве, ультрафиолетовых лучей вызывать при облучении кожи эритему. Единицей дозы в этом методе является 1 биологическая доза (1 биодоза). Одна био­ доза (минимальная эритемная доза) - это наименьшее время облучения (в с) ультрафиолетовыми лучами кожи данного

Фототерапия

207

Рис. 72. Биодозиметры ультрафиолетовых облучений. А - БД-2; Б - БУФ-1.

больного на определенном участке его тела (обычно внизу жи­ вота) и фиксированном расстоянии от облучателя (обычно 50 см), которое обусловливает развитие эритемы минимальной интенсивности через 12-24 часа.

Определение биодозы для кожных покровов производят

специальным

прибором

-

биодозиметром

БД-2,

представляющим

собой

металлическую пластинку

с 6

прямоугольными отверстиями, закрывающимися заслонкой (рис. 72А). Биодозиметр фиксируют на коже нижней части живота и направляют на него ультрафиолетовое излучение от источника, расположенного на расстоянии 50 см от облучаемого участка. Последовательно, с интервалом в 10 с, открывают по одному отверстию пластины. В результате кожа в первом отверстии облучается 60 с, в последнем - 10 с. Через 12-24 часа по

пороговой эритеме (розовая полоска с четырьмя

четкими

углами) устанавливают биодозу, которая равна

времени

облучения кожи в секундах над этим отверстием.

 

По данным обследования 10-15 здоровых человек устанавли­ вают среднюю биодозу для данного излучателя. Существует квадратическая зависимость биодозы с расстоянием от облучателя до облучаемого участка. Расчет производится по формуле:

[6.1]

где - биодоза на искомом расстоянии - биодоза, определенная на фиксированном расстоянии 50 см от по­ верхности тела больного.

208

Глава б

Рис. 73. Общее ультрафиолетовое облучение больного.

— — — — — — — — — i Ш ^ Ш Ш — — — — ^ w — M W • ^ — — — « Щ — — « a — w w —

Чувствительность слизистых обсмючек к ультрафиолетовому из­ лучению определяют по методу В.Н.Ткаченко при помощи биодози­ метра БУФ-1 (рис. 72Б). Он представляет собой пластину с 4-мя отверстиями, которую надевают на тубус излучателя, расположенно­ го контактно над соском, где чувствительность пигментированной кожи приближается к чувствительности слизистых оболочек. От­ верстия пластины открывают по одному с интервалом 30 с, а биодо­ зу определяют через 12 часов по минимальной эритеме.

В зависимости от интенсивности облучения различают малые эритемные дозы (1-2 биодозы), средние (3-4 биодозы), боль­ шие (5-8 биодоз) и гиперэритемные (свыше 8 биодоз).

Методика. Используют две основные методики ультрафио­ летового облучения: общую и местную.

При общем воздействии облучают поочередно переднюю, заднюю и боковые поверхности тела больного, находящегося в положении лежа (рис. 73). Приняты три схемы общего средне­ волнового ультрафиолетового облучения в субэритемных по­ степенно нарастающих дозах: основная, ускоренная и замед­ ленная (табл. 10). При этом облучение начинают соответственно

с биодозы и постепенно доводят до 3-4 биодоз. Продолжительность курса облучения составляет 15-25 дней.

Фототерапия

209

При местном воздействии применяют средневолновое уль­ трафиолетовое облучение в эритемных дозах на участке пло­ щадью не более 600 см2 .

Т а б л и ц а 10

Повторные облучения проводят через 2-3 дня, с повышением дозы облучения на 25-50%. Один и тот же участок облучают 3-4 раза. При необходимости многократного облучения в эритемных дозах на большой поверхности тела его проводят через перфорирован­ ный локапизатор из медицинской клеенки, предложенный И.И.Шиманко.

Плотность потока энергии в пределах светового пятна составля­ ет не менее 20 Продолжительность курсового воздействия определяется используемой методикой облучения и индивидуаль­ ной дозой средневолнового ультрафиолетового облучения. По­ вторные средневолновые ультрафиолетовые облучения назначают через 1 мес (местное) и через 2-3 мес (общее).

210 Глава 6

Коротковолновое облучение

Коротковолновое облучение - лечебное применение корот­ коволнового ультрафиолетового излучения.

Ультрафиолетовое излучение коротковолнового диапазона вызывает денатурацию и фотолиз нуклеиновых кислот и белков за счет избыточного поглощения энергии его квантов молекула­ ми ДНК и РНК. Это приводит к инактивации генома и белоксинтетического аппарата клеток. Происходящие при этом летальные мутации с ионизацией атомов и молекул приводят к инактивации и разрушению структуры микроорганизмов и грибов.

Коротковолновые ультрафиолетовые лучи вызывают в начальный период облучения кратковременный спазм капилля­ ров с последующим более продолжительным расширением суб­ капиллярных вен. В результате на облученном участке форми­ руется коротковолновая эритема красноватого цвета с синюш­ ным оттенком. Она развивается через несколько часов и исчезает в течение 1-2 суток.

Коротковолновое ультрафиолетовое облучение крови стиму­ лирует клеточное дыхание ее форменных элементов, уве­ личивается ионная проницаемость мембран. При аутотрансфузии ультрафиолетом облученной крови (АУФОК) нарастает количество оксигемоглобина и повышение кислородной емкости крови. В результате активации процессов перекисного окисле­ ния липидов в мембранах эритроцитов и лейкоцитов, а также разрушения тиоловых соединений и а-токоферола в крови по­ являются реакционно-активные радикалы и гидроперекиси, ко­ торые способны нейтрализовать токсические продукты.

В результате вызванной коротковолновым ультрафиолетовым излучением десорбции белков и углеводов с внешнего примембранного слоя клеток крови увеличивается вероятность межкле­ точных дистанционных взаимодействий с рецепторно-сигналь- ными белками различных элементов крови. Эти процессы лежат в основе выраженных неспецифических реакций системы крови при ее коротковолновом облучении. К числу таких реакций от­ носятся изменения агрегационных свойств эритроцитов и тром­ боцитов, фазовые изменения содержания лимфоцитов и имму­ ноглобулинов A, G и М, повышение бактерицидной активности крови. Наряду с реакциями системы крови, коротковолновое ультрафиолетовое излучение вызывает расширение сосудов

Фототерапия

211

микроциркуляторного русла, нормализует свертывающую систему крови и активирует трофометаболические процессы в тканях.

Лечебные эффекты: бактерицидный и микоцидный (для по­ верхностного облучения); иммуностимулирующий, метаболи­ ческий, коагулокоррегирующий (для ультрафиолетового об­ лучения крови).

Показания. Острые и подострые воспалительные заболевания ко­ жи, носоглотки (слизистых носа, миндалин), внутреннего уха, раны с опасностью присоединения анаэробной инфекции, туберкулез кожи. Кроме них для АУФОК показаны гнойные воспалительные заболевания (абсцесс, карбункул, остеомиелит, трофические язвы), ишемическая болезнь сердца, бактериальный эндокардит, гипертоническая болезнь I- II стадии, пневмония, хронический бронхит, хронический гиперацидный гастрит, язвенная болезнь, острый сальпингоофорит, хронический пие­ лонефрит, нейродермит, псориаз, рожа, сахарный диабет.

Противопоказания. Повышенная чувствительность кожи и слизистых к ультрафиолетовому излучению. Для АУФОК противопоказаны порфирии, тромбоцитопении, психические заболевания, гепато- и нефропатии, каллезные язвы желудка и двенадцатиперстной кишки, гипокоагулирующий синдром различной этиологии, острое нарушение мозгового крово­ обращения, острый период инфаркта миокарда

Параметры. Для проведения процедур используют коротковолно­ вое ультрафиолетовое излучение =180-280 нм). В клинической практике применяют только искусственные источники коротковолно­ вых ультрафиолетовых лучей. В интегральных источниках использу­ ют газоразрядные лампы ДРК-120, применяемые во внутриполостных

облучателях ОУП

1 и ОУП 2,

а также лампу ДРТ-250 в облучателе для

носоглотки. В

селективных

источниках =254-264 нм). применяют

дуговые бактерицидные лампы (ДБ), изготовленные из увиолевого стекла и имеющие вольфрамовые электроды. Источником ультрафио­ летового излучения в них является электрический разряд в смеси па­ ров ртути с аргоном. Выпускаются лампы трех типов - ДБ-15, ДБ-30-1 и ДБ-60, мощность которых составляет соответственно 15, 30 и 60 Вт. Их устанавливают в следующих облучателях: настенных (ОБН), пото­ лочных (ОБП), на штативе (ОБШ) и передвижных (ОБП). Кроме них бактерицидные лампы ДРБ-8 используют в облучателе коротковолно­ вом ультрафиолетовом БОД-9. В облучателе коротковолновом для слизистых оболочек БОП-4 излучателем является запаянная кварцевая пробирка с капелькой ртути.

212

Глава 6

Рис. 74. Ультрафиолето­ вое облучение миндалин интегральным источни­ ком.

Для процедур АУФОК используют аппарат МД-73М "Изольда" с источником ультрафиолетового излучения - лампой низкого давления ЛБ-8. В аппарате предусмотрена регулировка площади облучения поверхности и дозы облучения. Энергия излучения ламп, применяемых для АУФОК, сосредоточена преимуществен­ но (84%) в диапазоне длин волн 200-280 нм.

Методика. Используют местное облучение пораженных участ­ ков кожи или слизистых пораженных органов по схемам для об­ щего ультрафиолетового излучения, (см. Средневолновое облу­ чение). Облучение слизистой оболочки носа проводят в положе­ нии больного на стуле со слегка отклоненной назад головой. Тубус излучателя вводят поочередно на небольшую глубину в правую и левую половину носа. При облучении миндалин излуче­ ние при помощи зеркала на аппарате УГН-1 направляют сначала на одну, а затем на другую миндалины (рис. 74). Во время про­ цедуры больной удерживает высунутый язык с помощью марле­ вой салфетки и добивается того, чтобы корень языка не мешал облучению миндалин.

В первых процедурах АУФОК кровь облучают из расчета 0,5- 0,8 мл на 1 кг массы больного в течение 10-15 мин, а затем ко­ личество крови увеличивают до 1-2

Дозирование лечебных процедур осуществляют путем определения биодо­ зы также как и для средневолнового ультрафиолетового облучения слизи­ стых оболочек (см. Средневолновое облучение). При остром воспалении облучение начинают с 1-1,5 биодоз, увеличивают на 1 биодозу и доводят до 3 биодоз. Продолжительность облучения крови не превышает 10-15 мин,

Фототерапия

213

курс 7-9 процедур. Повторные коротковолновые облучения наз­ начают через 1 мес, АУФОК - через 3-6 мес.

ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ

Лазеротерапия

Лазеротерапия - лечебное применение оптического из­ лучения, источником которого является лазер. Это класс прибо­ ров, в конструкции которых использованы принципы усиления оптического излучения при помощи индуцированного испускания квантов (LASER — Light Amplification by Stimulated Emission of Radiation — усиление света с помощью вынужденного из­ лучения). Использование этих принципов позволило получить лазерное излучение, которое имеет фиксированную длину вол­ ны (монохроматичность), одинаковую фазу излучения фото­ нов (когерентность), малую расходимость пучка (высокую направленность) и фиксированную ориентацию векторов элек­ тромагнитного поля в пространстве (поляризацию).

При поглощении тканями организма лазерного излучения уже на расстоянии 250-300 мкм его когерентность и поляризация исчезают. В этой области (specieструктура) имеются резкие максимумы интенсивности, особенно при непрерыывном режиме излучения. Далее в глубь тканей распространяется поток моно­ хроматического излучения. Он вызывает избирательную актива­ цию молекулярных комплексов биологических тканей (фотобиоактивация). Поглощая энергию кванта лазерного излучения, электроны нижних орбиталей могут переходить на более высокие энергетические уровни, в результате чего насту­ пает электронное возбуждение биомолекул. В таком состоянии биомолекулярные комплексы приобретают высокую реакцион­ ную способность, что позволяет им активно участвовать в раз­ нообразных процессах клеточного метаболизма.

Возвращение электронов на исходные орбитали сопровождается испускани­ ем в части случаев квантов, возбуждающих соседние биомолекулы (феномен переизлучения). За счет этого в красном и ближнем инфракрасном диапазоне проникающая способность лазерного излучения увеличивается до 40 и 70 мм соответственно. Миграция энергии лазерного возбуждения биомолекул может осуществляться и путем безизлучательного обмена между электронновозбужденными молекулами (фотодонорами) и молекулами, находящимися в