Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие 5.85.1.doc
Скачиваний:
606
Добавлен:
26.03.2015
Размер:
17.42 Mб
Скачать

9.8. Метод свертки

В общем случае устройства и системы с резервиро­ванием представляют собой сложные последовательно-параллельные структуры. При расчете надежности таких устройств используют метод, позволяющий перейти к структуре последовательно соединенных элемен­тов. Метод основан на замене нескольких параллельно соединенных эле­ментов структуры одним элементом с эквивалентной надежностью, учитывающей параллельность соединения. Таким образом, сложная структура постепенно «сворачивается» в простую последовательную. Поэтому такой метод и называется методом свертки.

Проиллюстрируем метод с помощью сворачивания структуры, изо­браженной на рис. 9.16, а. Обозначим вероятности безотказной работы структурных элементов У1, У2, ..., У11 за некоторое время t, как P1, P2, …, P11 а вероятности их отказов Q1, Q2, …, Q11 соответственно. Вы­делим узлы, состоящие из параллельно соединенных элементов: узел 1 - элементы УЗ, У4, У5; узел 2 - элементы У7, У8; узел 3 - элементы У9, У10, У11. Найдем вероятности отказа этих узлов:

.

Вероятность их безотказной работы соответственно будет:

.

Рис. 9.16. Принцип сворачивания структуры системы

Осуществим первую свертку в структуре, заменив узлы 1, 2, 3 эквива­лентами с вероятностями безотказной работы ,. Трансфор­мированная структура изображена на рис. 9.16, б. Она содержит один узел, состоящий из двух параллельных ветвей: ветвь 1 - элементы У2, У6, ветвь 2 - элементы У (3-5), У(7-8). Вероятности безотказной работы этих ветвей:

а вероятности отказа:

Осуществим вторую свертку, за­меняя ветвь 1 и ветвь 2 эквивалента­ми с вероятностями отказа , В новой структуре (рис. 9.16, в) имеется лишь один узел, веро­ятность отказа которого , а вероятность без­отказной работы соответствен­но

Осуществляем третью свертку, заменяя узел У(2-6), У(3-8) эквива­лентом с вероятностью безотказной работы . В результате приходим к простой последовательной струк­туре (рис. 9.16, г). Таким образом, вероятность безотказной работы системы с исходной структурой (рис. 9.16, а) может быть определена как вероятность отказа соответственно

В некоторых случаях не удается непосредственно с помощью метода свертки перейти к простой последовательной структуре. Это относится к сложным структурам с перекрестными связями. Для них применяют дру­гие методы, рассматриваемые далее.

9.9. Логико-вероятностный метод

В ряде случаев объект или систему невозможно представить со­стоящей из параллельно-последовательных соединений. Особенно это от­носится к цифровым электронным информационным системам, в которых для повышения надежности вводятся перекрестные информационные свя­зи. На рис. 9.17 изображена часть структуры системы с перекрестными свя­зями (стрелки показывают возможные направления перемещения информации в системе). Для оценки надежности таких структур действенным оказывается логико-вероятностный метод.

Рис. 9.17 Мостиковая схема подачи топлива;

1-2 –насосы, 3,4,5 – клапаны

Рис. 9.18 Мостиковая схема измерительно-вычислительного комплекса;

1,2 – запоминающее устройство; 3,4 – процессоры; 5 – блок, обеспечивающий двустороннюю передачу цифровых данных.

В методе работоспособное состояние структуры предлагается описы­вать с помощью аппарата математической логики с последующим фор­мальным переходом к вероятности безотказной работы оцениваемой сис­темы или устройства. При этом через логическую переменную xj обозначается событие, заключающееся в том, что данный i-й элемент работоспособен. Формально работоспособное состояние всей системы или объекта отображается логической функцией, называемой функцией работоспособности. Для нахождения этой функции необходимо определить, следуя от входа к выходу структуры системы все пути движения информации и рабочего тела, отвечающему работоспособному состоянию системы. Например, на рис. 9.17. таких путей четыре: путь 1 –, путь 2 -, путь 3 –, путь 4 –.

Зная все пути, отвечающие работоспособному состоянию структуры можно записать в символах алгебры логики в дизъюнктивно – конъюктивной форме функцию работоспосбности (X)/ Например для рис. 9.17 это:

(9.35)

Применяя известные методы минимизации, логическую функцию работоспособности, упрощают и переходят от нее к уравнению работоспособности системы в символах обычной алгебры. Осуществляется такой переход формально с использованием известных соотношений (слева логическая запись, справа алгебраическая):

, (9.36)

, (9.37)

. (9.38)

Вероятность безотказной работы объекта (см. рис. 9.16, 9.17) в целом определяется формальной подстановкой в алгебраическое выражение функции работоспособности вместо переменных значение вероятностей безотказной работы каждого i-ого элемента системы.

Пример. Необходимо найти в общем виде вероятность безотказной работы объектов, структура которых представлена на рис. 9.16 и 9.17. Несмотря на различные элементные базы элементы структуры этих объектов с точки зрения формальной логики идентичны. В связи с этим для наглядности на рис. 9.17 элементы У1, У2 – два одинаковых равнонадежных насоса с вероятностями безотказной работы . Элементы У3, У4 – два равнонадежных процессора с вероятностью безотказной работы. Элемент У5 – переключающий клапан, обеспечивающий двустороннюю подачу рабочего тела (например топлива) на выходе объекта.

Аналогичным образом выглядит структура объекта на рис. 9.17, где элементы У1, У2 два одинаковых равнонадежных запоминающих устройства (ЗУ), с вероятностью безотказной работы . Элементы У3, У4 – два одинаковых равнонадежных процессора с вероятностью безотказной работы. Элемент У5 блок, обеспечивающий двустороннюю передачу цифровых данных. Вероятностью безотказной работы этого блока .

Учитывая (9.36), (9.37), (9.38) можно произвести формальный переход от записи (9.35) к алгебраической форме записи. Так для нахождения логической функции работоспособности объекта возможные пути прохождения информации (рабочего тела) от входа к выходу имеют вид:

или илиили ,

Откуда с учетом (9.35) осуществляется формальный переход от записи (9.35) к алгебраической форме записи:

(9.39)

От (9.39) переходим к вероятности безотказной работы всего устройства путем формальной замены на. При этом, опуская аргументи принимая во внимание, чтои, получим окончательно

; (9.40)

При всех равнонадежных элементах выражение (9.40) примет вид:

. (9.41)