Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матанализ_методичка_2семестр2014.doc
Скачиваний:
110
Добавлен:
13.03.2015
Размер:
987.65 Кб
Скачать

Тема 4. Приложения производной

Теорема Ролля* и Лагранжа. Правило Лопиталя (без вывода). Признаки возрастания и убывания функции. Экстремум функции. Необходимые и достаточные признаки экстремума (второй достаточный признак – без доказательства). Наибольшее и наименьшее значения функции на отрезке; их нахождение; решение задач. Исследование функции (область определения, четность и нечетность, интервалы монотонности и точки экстремума, поведение функции при и в точках разрыва, вертикальные, горизонтальные и наклонные асимптоты, точки пересечения графика с осями координат) и построение ее графика. Квадратичная функция y = ax2 + bx + c и ее график. Дробно-линейная функция y = (ax + b)/(cx + d) и ее график ([1 или 5, § 8.1 – 8.5, 8.7 – 8.9]; [2 или 6, § 8.1 – 8.3, 8.5], или [3, § 8.1 – 8.5, 8.7, 8.8, 8.10 – 8.12, 8.14], или [4, §4.1 – 4.5, 4.7, 4.8, 4.10 – 4.12, 4.14])

Одно из простейших приложений производной – раскрытие неопределенностей вида [0/0] или с помощью правила Лопиталя ([1, или 5, или 3, § 8.2]). Обратите внимание на то, что согласно формуле (8.3) предел отношения двух бесконечно малых или двух бесконечно больших функций равен пределу отношения их производных, а не пределу производной частного этих функций.

Теоремы дифференциального исчисления являются обоснованием такой важной области приложения производных, как исследование функций. Студенты должны знать формулировки этих теорем, четко различая в них условие и заключение.

В учебнике приведена схема исследования функции для нахождения ее характерных точек и особенностей, по которым можно построить ее график ([1, или 5, или 3, § 8.8]). Выполнение пункта 60 этой схемы, связанного с нахождением интервалов выпуклости функции и точек перегиба, не обязательно.

Тема 5. Дифференциал функции

Понятие дифференциала функции. Геометрический смысл дифференциала. Свойства дифференциала. Инвариантность формы дифференциала первого порядка. ([1или 5, § 9.1, 9.2]; [2 или 6, гл. 9]; [3, § 7.7 – 7.9, 7.13] или [4, §3.7 – 3.9, 3.13]).

Дифференциал функции y = f (x) – главная, линейная (относительно приращения Δx аргумента) часть приращения функции – равен произведению производной на дифференциал независимой переменной, т.е. dy= (x)dx. Геометрический смысл дифференциала рассмотрен в ([1 или 5, § 9.1] или [3, § 7.4]).

Операция нахождения дифференциала сводится к нахождению производной и также называется дифференцированием функции.

Важное свойство дифференциала первого порядка – инвариантность его формы ( или формулы). Это означает, что дифференциал функции

y = f (u) есть dy = (u)du и не зависит от того, является ли u независимой переменной или функцией. Свойство инвариантности формы дифференциала используется далее в интегральном исчислении.

Раздел III. Функции нескольких переменных

Тема 6. Функции нескольких переменных

Функции двух и нескольких переменных. Частные производные и техника дифференцирования. Экстремум функции двух переменных и его необходимое условие. Понятие об эмпирических формулах и методе наименьших квадратов. Построение методом наименьших квадратов линейной функции по эмпирическим данным (вывод системы нормальных уравнений) ([1 или 5, § 15.1, 15.3, 15.6, 15.9]; [2 или 6, § 15.1 – 15.4], или [3, § 9.1, 9.3, 9.7, 9.10, 9.12 – 9.15], или [4, §5.1, 5.3, 5.7, 5.10, 5.12 – 5.15]).

Фактически мы ограничиваемся рассмотрением функции двух переменных. Для успешного усвоения этого раздела рекомендуется использовать метод аналогии с функциями одной переменной, хотя с увеличением числа переменных возникают существенные качественные отличия. Область определения функции двух переменных изображается множеством точек плоскости, а график – некоторой поверхностью в трехмерном пространстве ([1или 5, пример 15.2] или [3, пример 9.2]).

В определении частной производной функции по одной из переменных используется понятие частного приращения, а в остальном оно сходно с определением производной функции одной переменной. Обратите внимание на способы обозначения частных производных. Техника дифференцирования функции двух (нескольких) переменных использует те же правила и приемы, которые применялись при нахождении производных функций одной переменной.

Для экстремума функции двух переменных формулируется определение и необходимое условие его существования ([1 или 5, § 15.6] или [3, § 9.7]), которые не являются достаточными.

Построение эмпирических формул методом наименьших квадратов имеет большое прикладное значение, в том числе в статистических и экономических исследованиях. Так как эмпирическая формула включает неизвестные параметры, то критерий, согласно которому она получается, является функцией этих параметров (функцией нескольких переменных). Параметры подбираются таким образом, чтобы критерий принял оптимальное (минимальное) значение. Возникает задача нахождения экстремума функции нескольких переменных – этим и объясняется рассмотрение в данном разделе метода наименьших квадратов.

Полученная методом наименьших квадратов эмпирическая формула является приближением таблично заданной функции.

Следует отметить, что погрешность построенного приближения f(x) оценивается величиной , где, аn – число табличных значений (xi, yi). Используя полученное приближение, можно найти значения функций в точках, которые отличаются от табличных и лежат внутри отрезка (x1, xn) (интерполяция) или вне его (экстраполяция).