Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
book.pdf
Скачиваний:
281
Добавлен:
14.02.2015
Размер:
800.84 Кб
Скачать

Лекция 9. Плоскость и прямая в пространстве

1. Общее уравнение плоскости

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0 , где А, В, С – координаты вектора

N = Ai + Bj + Ck -вектор нормали к плоскости. Возможны следующие частные случаи:

A = 0 – плоскость параллельна оси Ох

B = 0 – плоскость параллельна оси Оу C = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

A = B = 0 – плоскость параллельна плоскости хОу A = C = 0 – плоскость параллельна плоскости хОz B = C = 0 – плоскость параллельна плоскости yOz A = D = 0 – плоскость проходит через ось Ох

B = D = 0 – плоскость проходит через ось Оу C = D = 0 – плоскость проходит через ось Oz

A = B = D = 0 – плоскость совпадает с плоскостью хОу A = C = D = 0 – плоскость совпадает с плоскостью xOz B = C = D = 0 – плоскость совпадает с плоскостью yOz

2. Уравнение поверхности в пространстве

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

3. Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какиелибо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе

координат.

 

 

 

 

 

 

Для того, чтобы произвольная точка M (x, y, z)

лежала в одной плоскости с точками

M1, M2 , M3 необходимо, чтобы векторы M1M 2 , M1M 3 , M1M были компланарны, т.е

M1M = {x x1 ; y y1 ; z z1}

 

 

 

( M1M 2 , M1M 3 , M1M ) = 0. Таким образом, M1M 2

= {x2 x1 ; y2

y1 ; z2 z1}

M1M 3

= {x3 x1 ; y3 y1 ; z3 z1}

 

 

x x1

y y1

z z1

 

 

 

 

 

Уравнение плоскости, проходящей через три точки:

x2 x1

y2 y1

z2 z1

 

= 0

 

 

x3 x1

y3 y1

z3 z1

 

 

35

4. Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и векторa = (a1, a2 , a3 ) .

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную

точку М(х, у, z) параллельно вектору a .

 

 

 

 

 

 

 

 

 

 

Векторы M1M = {x x1 ; y y1 ; z z1}

и вектор a = (a , a

2

, a

3

)

должны быть

M1M 2 = {x2 x1 ; y2 y1 ; z2 z1}

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x1

 

y y1

z z1

 

 

 

 

 

 

 

компланарны, т.е. ( M1M , M1M 2 , a ) = 0.Уравнение плоскости:

x2 x1

y2 y1

z2 z1

 

= 0

 

 

 

a1

 

a2

a3

 

 

5. Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Пусть заданы два вектора a = (a1, a2 , a3 ) и b = (b1,b2 ,b3 ) , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы a,b, MM1 должны быть компланарны.

 

x x1

y y1

z z1

 

 

 

 

Уравнение плоскости:

a1

a2

a3

 

= 0 .

 

b1

b2

b3

 

 

6. Уравнение плоскости по точке и вектору нормали

Теорема. Если в пространстве задана точка M0 (x0 , y0 , z0 ) , то уравнение плоскости, проходящей через точку M0 перпендикулярно вектору нормали N ( A, B,C) имеет вид: A(x x0 ) + B ( y y0 ) + C (z z0 ) = 0 .

7. Уравнение плоскости в отрезках

Если в общем уравнении Ax + By + Cz + D = 0 поделить обе части на (-D)

A

x

B

y

 

C

z 1 = 0 , заменив

D

= a,

D

= b,

D

= c , получим уравнение плоскости

 

 

 

 

A

B

C

 

D

D

 

 

 

D

 

 

 

 

 

 

 

 

в отрезках:

x

 

+

y

+

z

= 1 . Числа a, b, c являются точками пересечения плоскости соответственно

a

b

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с осями х, у, z.

8. Уравнение плоскости в векторной форме

r n = p, где r = xi + yj + zk - радиусвектор текущей точки M (x, y, z) ,

n = i cosα + j cos β + k cosγ - единичный вектор, имеющий направление, перпендикуляра,

опущенного на плоскость из начала координат. α, β и γ - углы, образованные этим вектором с осями х, у, z. p – длина этого перпендикуляра. В координатах это уравнение имеет вид:

x cosα + y cos β + z cosγ p = 0

36

9. Расстояние от точки до плоскости

Расстояние от произвольной точки M0 (x0 , y0 , z0 ) до плоскости Ax + By + Cz + D = 0 равно:

d = Ax0 + By0 + Cz0 + D

A2 + B2 + C 2

Пример. Найти уравнение плоскости, проходящей через точки А(2,-1,4) и В(3,2,-1) перпендикулярно плоскости x + y + 2z 3 = 0 .

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0 , вектор нормали к этой плоскости n1 (A,B,C). Вектор AB (1,3,-5) принадлежит плоскости. Заданная нам плоскость,

перпендикулярная искомой имеет вектор нормали n2 (1,1,2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

n = AB × n

 

 

i

j

k

= i

 

3

5

 

j

 

1

5

 

+ k

 

1

3

 

= 11i 7 j 2k.

 

 

 

 

 

 

 

 

2

=

1

3

5

 

 

 

 

 

 

1

 

 

 

 

 

 

1

2

 

 

 

1

2

 

 

 

1

1

 

 

 

 

 

1

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, вектор нормали n1 (11,-7,-2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е.

11.2+ 7.12.4 + D = 0; D = −21. Итого, получаем уравнение плоскости: 11x 7 y 2z 21 = 0

10.Уравнение линии в пространстве

Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе координат удовлетворяют уравнению:

F(x, y, z) = 0 . Это уравнение называется уравнением линии в пространстве.

Кроме того, линия в пространстве может быть определена и иначе. Ее можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана какимлибо уравнением.

Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L.

F(x, y, z) = 0

Тогда пару уравнений Ф(x, y, z) = 0 назовем уравнением линии в пространстве.

11. Уравнение прямой в пространстве по точке и направляющему вектору

Возьмем произвольную прямую и вектор S (m, n, p), параллельный данной прямой. Вектор S называется направляющим вектором прямой.

На прямой возьмем две произвольные точки M0 (x0 , y0 , z0 ) и M (x, y, z) .

z

37

z

S M1

M0

r0 r

Обозначим радиусвекторы этих точек как r0 и r , очевидно, что r r0 = M0 M .

Т.к. векторы М0 М и S коллинеарны, то верно соотношение М0 М = St , где t – некоторый параметр. Итого, можно записать: r = r0 + St .

Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.

x = x0 + mt

Это векторное уравнение может быть представлено в координатной форме: y = y0 + nt

z = z0 + pt

Преобразовав эту систему и приравняв значения параметра t, получаем канонические

уравнения прямой в пространстве:

x x0

=

y y0

=

z z0

.

m

n

 

 

 

 

p

Определение. Направляющими косинусами прямой называются направляющие косинусы вектора S , которые могут быть вычислены по формулам:

cosα =

m

 

; cos β =

n

; cosγ =

p

.

+ n2

+ p2

+ n2 + p2

m2 + n2 + p2

m2

m2

 

 

Отсюда получим: m : n : p = cosα : cos β : cosγ .

Числа m , n , p называются угловыми коэффициентами прямой. Т.к. S - ненулевой вектор, то m, n и p не могут равняться нулю одновременно, но одно или два из этих чисел могут равняться нулю. В этом случае в уравнении прямой следует приравнять нулю соответствующие числители.

12. Уравнение прямой в пространстве, проходящей через две точки

Если на прямой в пространстве отметить две произвольные точки M1 (x1, y1, z1 ) и

M2 (x2 , y2 , z2 ), то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

x2 x1

=

y2 y1

=

z2 z1

.

m

n

 

 

 

p

38

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]