Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.doc
Скачиваний:
395
Добавлен:
11.02.2015
Размер:
9.3 Mб
Скачать

Дефекты в кристаллах

Реальные кристаллы отличаются от идеальных нарушением строгого порядка в кристаллической решётке. Нарушение строгого порядка может быть вызвано разными причинами. Говорят, что в кристаллах есть дефекты.

Дефекты можно разделить на точечные, линейные (дислокации), поверхностные и объёмные.

Примеси оказывают влияние на физические свойства кристаллов, например, полупроводники с донорными или акцепторными примесями обладают примесной проводимостью наряду с собственной проводимостью.

Дефекты по Шоттки - отсутствие частицы в каком-нибудь узле кристаллической решётки (вакансия в узле).

Дефекты по Френкелю представляют собой наличие частицы в междоузлии, которая оказывается там, покинув своё место в одном из узлов. В этом случае образуется пара дефектов (пара Френкеля), так как пустой узел и наличие лишней частицы в междоузлии в равной мере приводят к нарушению строгого порядка.

Линейные дефекты или дислокации можно разделить на краевые и винтовые.

Краевые дефекты проявляются в наличии края «лишней» атомной плоскости.

Винтовые дислокации представляют собой винтовую линию, образованную из частиц кристалла.

Поверхностные дефекты – это дефекты, проявляющиеся на плоскости. К ним относятся поверхность самого кристалла, границы между отдельными частями кристалла, по-разному ориентированными, границы между кристаллами в поликристалле.

Объёмные дефекты – это дефекты, проявляющиеся в трёхмерном пространстве. К ним относятся поры и трещины в кристаллах.

Все дефекты влияют на физические свойства кристаллов, такие как прочность, электропроводность, теплопроводность и другие.

Тепловые свойства кристаллов

Вещество может находиться в твёрдом состоянии при достаточно низких температурах, когда энергия тепловых движений частиц много меньше потенциальной энергии взаимодействия частиц между собой, поэтому колебания частиц около положения равновесия являются относительно малыми. При абсолютном нуле температуры всякие тепловые колебания частиц вещества исчезают. Кристалл должен быть строго упорядочен, а его энтропия равна нулю. При передаче теплоты твёрдому телу, теплота расходуется на увеличение энергии колебаний частиц-осцилляторов около положения равновесия. Эта энергия складывается из кинетической и потенциальной энергий колеблющихся частиц. Полную внутреннюю энергию твёрдого тела, состоящего из N частиц с учётом всех степеней свободы частиц определяют по формуле:

(10-15)

Внутренняя энергия одного моля твёрдого вещества равна . При нагревании твёрдого тела можно пренебречь изменением его объёма и считать, что вся теплота, подведённая к телу, идёт на увеличение его внутренней энергии. Молярная теплоёмкость твёрдого телав этом случае приблизительно равна 25 Дж/(моль.К). Исследуя теплоёмкость твёрдых тел в широком диапазоне температур, Дюлонг и Пти пришли к выводу (закон Дюлонга и Пти), что молярная теплоёмкость твёрдых тел есть величина постоянная, одинаковая для всех веществ и не зависящая от температуры.

Однако, дальнейшие исследования температурных зависимостей теплоёмкостей веществ показали, что при обычных температурах теплоёмкости четырёх веществ: бериллия (Ве), бора (В), кремния (Si) и алмаза – значительно ниже 3R. С повышением температуры теплоёмкость этих веществ растёт, стремясь к 3R. Позднее было обнаружено отклонение от закона Дюлонга и Пти для всех веществ при низких температурах, близких к абсолютному нулю. Причём, теплоёмкость стремится к нулю при стремлении температуры к абсолютному нулю. Таким образом, была обнаружена зависимость теплоёмкости твёрдых тел от температуры в области низких температур, причём теплоёмкость убывала по закону:С~1/Т 3 . Попытки объяснить температурную зависимость (рис.10.14) теплоёмкости твёрдых тел были сделаны Эйнштейном. Однако правильное объяснение такой зависимости было дано Дебаем на основе квантовых законов.