Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2012 УМК_МАТЕМАТИКА (заочное - 1год).doc
Скачиваний:
18
Добавлен:
17.11.2019
Размер:
4.07 Mб
Скачать

Тема 13. Дифференциальные уравнения высших порядков.

Уравнение вида , где - искомая функция, называется дифференциальным уравнением -го порядка. Функция , обращающая уравнение в тождество, называется решением уравнения. Если решение уравнения задано в неявном виде , то оно называется интегралом уравнения.

Уравнение вида , называется уравнением, разрешённым относительно старшей производной. Эту форму записи ДУ -го порядка называют нормальной.

Условия , ,…, , где , , ,…, - заданные числа, называются начальными условиями. Задача нахождения решения уравнения , удовлетворяющего заданным начальным условиям, называется задачей Коши.

Общим решением ДУ -го порядка называется решение , зависящее от произвольных постоянных , такое, из которого при надлежащем выборе значений постоянных можно получить решение , удовлетворяющее заданным начальным условиям , ,…, . Общее решение, заданное в неявном виде , называется общим интегралом уравнения.

Частным решением ДУ -го порядка называется решение , получаемое из общего при конкретных значениях постоянных . Частное решение, заданное в неявном виде , называется частным интегралом.

Уравнение вида называется простейшим дифференциальным уравнением -го порядка. Его общее решение находят, выполняя последовательно интегрирований, и записывают в виде

.

Функции , ,…, называются линейно зависимыми на , если существуют постоянные , ,…, , не все равные нулю, такие, что для всех . Если равенство выполняется для всех только при условии , то данные функции называются линейно независимыми на .

Уравнение вида называется линейным дифференциальным уравнением (ЛДУ) -го порядка , где коэффициенты - непрерывные функции или постоянные. Если , то уравнение называется однородным. Однородное линейным уравнение -го порядка имеет вид .

Любая система из линейно независимых частных решений , ,…, однородного линейного уравнения называется фундаментальной системой его решений.

Общее решение однородного линейного уравнения имеет вид , где - фундаментальная система его решений; - произвольные постоянные .

Фундаментальная система решений однородного ЛДУ с постоянными коэффициентами строится на основе характера корней характеристического уравнения .

А именно: 1) если - действительный простой корень характеристического уравнения, то ему в ФСР соответствует частное решение дифференциального уравнения; 2) если - действительный корень кратности , то ему в ФСР соответствует линейно независимых частных решений: , , ,…, ; 3) если - пара простых комплексно-сопряжённых корней характеристического уравнения, то ей в ФСР соответствует два линейно независимых частных решения: , .

Общее решение неоднородного ЛДУ имеет вид , где - общее решение соответствующего однородного уравнения, - какое-нибудь частное решение данного неоднородного уравнения.

Частное решение уравнения с правой частью специального вида ищется методом неопределённых коэффициентов в виде , где , если число не является корнем характеристического уравнения, и равно кратности корня в противном случае; и - полные многочлены степени с неопределёнными коэффициентами. Примерами полных многочленов с неопределёнными коэффициентами степени соответственно являются: , , , ,…. Для нахождения коэффициентов многочленов и , надо подставить решение в неоднородное дифференциальное уравнение и приравнять коэффициенты при подобных членах в левой и правой частях полученного равенства. В результате получим систему уравнений, решив которую, найдём значения коэффициентов.