Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по матану( с 1- 56).doc
Скачиваний:
17
Добавлен:
26.09.2019
Размер:
3.24 Mб
Скачать
  1. Определение аналитической функции комплексной переменной, свойства.

Аналити́ческая функция (действительного переменного) — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения.

Свойства

  • Арифметические свойства

Если   и   аналитичны в области 

  1. Функции   и   аналитичны в  .

  2. Если   в области   не обращается в ноль, то   будет аналитична в 

  3. Если   в области   не обращается в ноль, то   будет аналитична в  .

  • Аналитическая функция бесконечно дифференцируема в своей области аналитичности. Обратное в общем случае неверно.

Некоторые свойства аналитических функций близки к свойствам многочленов, что, впрочем, и неудивительно — определение аналитичности в смысле Вейерштрасса свидетельствует о том, что аналитические функции — в некотором роде предельные варианты многочленов. Допустим, согласно основной теореме алгебры любой многочлен может иметь нулей числом не более его степени. Для аналитических функций справедливо аналогичное утверждение, вытекающее из теоремы единственности в альтернативной форме:

  • Если множество нулей аналитической в односвязной области функции имеет в этой области предельную точку, то функция тождественно равна нулю.

  1. Интегрирование функций комплексной переменной. Дифференцирование Определение

Производная для комплексной функции одного аргумента   определяется так же, как и для вещественной:

(здесь   — комплексное число). Если этот предел существует, функция называется дифференцируемой или голоморфной. При этом

Следует учитывать одну важную особенность: поскольку комплексная функция задана на плоскости, существование приведённого предела означает, что он одинаков при стремлении к   с любого направления. Этот факт накладывает существенные ограничения на вид функций-компонент   и определяет их жёсткую взаимосвязь (условия Коши — Римана):

Отсюда следует, что дифференцируемости компонент   и   недостаточно для дифференцируемости самой функции.

Более того, имеют место следующие свойства, отличающие комплексный анализ от вещественного:

  • Всякая дифференцируемая в некоторой окрестности точки   комплексная функция дифференцируема неограниченное число раз и аналитична, то есть её ряд Тэйлора сходится к данной функции во всех точках этой окрестности (в литературе наряду с термином аналитическая функция используется также его синоним «голоморфная функция»).

  • (Теорема Лиувилля): Если функция дифференцируема на всей комплексной плоскости и не является константой, то её модуль не может быть ограничен.

  • Обе компоненты дифференцируемой комплексной функции являются гармоническими функциями, то есть удовлетворяют уравнению Лапласа:

  • Любая гармоническая функция может быть как вещественной, так и мнимой компонентой дифференцируемой функции. При этом другая компонента определяется однозначно (из условий Коши — Римана), с точностью до константы-слагаемого.

Таким образом, любая дифференцируемая комплексная функция — это функция вида  , где   — взаимосвязанные гармонические функции двух аргументов.